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SECTION I

I INTRODUCTION

i Reference 1 provides the background information and results

on the asynchronous operation and design of closed-loop digital flight

control systems that have dual-redundant digital controllers. In the

model used, the digital controllers have the same sample rate but

I there is a fixed time skew, or offset between their respective sample

i times. Also, this model requires that the same channel is selected as

the output at all times. This latter assumption is roughly equivalent

I to a channel-voting scheme that selects the upper median (for a four-

channel system) or the lower median (for a three- or four-channel

I system) as the output when the channel outputs are either monotonically

* increasing or decreasing in time.

Section II below describes the same model as in Reference 1

1 except that the input to the plant is the difference between the

external input (pilot input) and the output of the first controller.

I An example, with a plot of the steady-state covariances of the errors

due to the time skew between controllers, is shown at the end of the

Section.

An extension to the model in Section Il is developed in Section

III. In this extended model, the first channel computes two outputs.

The first output is the input to the plant and is exactly the same as

the output of the first controller of the model in Section II. The

second output, which is an estimate of the output of the second channel,

is used to calculate the error due to the time skew between the two

II
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controllers. Like the model in Section II, the second channel computes

only one signal. In this model, the inherent errors depend on the

difference of the second output of the first channel and the output of I
the second channel. An example, with a plot of the steady-state

covariances of the second output of the first channel and the output

of the second channel, is presented at the end of the Section.

An algorithm to estimate the time skew between two asynchronous

systems is described in Section IV. The algorithm is based on the I
model in Section III. The comparison between the new configuration

in Section III (with the algorithm to estimate the time skew in Section

IV) and the old configuration in Section II is shown in Section VI.

Section V describes the application of the new model in asyn-

chronous redundant digital flight control systems and Section VII I
contains the conclusions and summary. General descriptions, flow 1
charts, user instructions and listings for all the software in this

report are shown in Appendices. I

m
i
I
I
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SECTION II

STATE EQUATIONS, COVARIANCE, AND EXAMPLES
FOR BASIC MODEL

The model illustrated in Figure 1 is labelled the basic model;

the assumptions, techniques, and style of analysis are the foundation

for the new model described in Section III of this report. The basic

model is similar to the model in Reference 1, except that the input

to the plant is the difference between the external input (pilot

I input) and the output of the first controller, while in the model of

Reference l,the input to the plant is the output of the first controller.

I. SYSTEM CONFIGURATION AND THE DYNAMIC EQUATION

5 1The system configuration for this closed-loop dynamic system

consists of a continuous-time plant and dual-redundant, single-rate

Idiscrete-time controllers. The plant output is sampled by each of the

fcontrollers, using a common sample period but having a fixed time skew
between them. The output of one of the controllers serves as the

i piecewise-constant input to the plant, along with an external input.

The plant equations include aircraft, sensor, and actuator dynamics,

I as well as any dynamics associated with the pilot input and wind-gust

I model input. The plant equations are assumed to be in the form

Xp = ApXP + Bpup (2-1)

yp = CpXp (2-2)I

where

Ii.
3
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I Xp = plant state vector (rip xl1)

I up = plant input vector (nup x 1)

wp = external input vector (nup xl1)

Ycl= controller 1 output vector (nup x 1)

I Yp = plant output vector (nop x 1)

IA = plant state matrix (fip x flp)

Bp = plant input matrix (rip x nup)

I p = plant output matrix (nop x n P)

I The solution to Equation I is

t
xp(t) = *(tito)xp(to) + f *(t~s)B Pup(s)ds (2-3)

I where *(tjt0) is the state transition matrix and for constant A
is given by

*(t,t 0 ) = exp [Ap(t-t0)] (2-4)

I The plant input up(t) is piecewise-constant over a given sampling

interval; i.e.,

up(t) = uP(tk) tk :it Itk+l

Iand so for t =tk, t 0 tk+l, and tk+l -tk =T, the second term in
Equation (2-3) can be written as

~-' Itk~l
f # (tk+lts)B PU P(s)ds * (tk+1.tk)up(tk) (2-5)I tk



whereI

*(tk+ltk) r 1 exp [Ap(t)]Bpdt (2-6)1
0

Substitution of (2-6) into (2-3) givesI

Xp(tk+l) = (tk+l~tk)xp(tk) + *(tk+l,tk)up(tk) (2-7)1

for k = 0, 1, ... 
I

The discrete-time equations for controller #1 are

xcl(tk+l) = Fcxcl(tk)-+ Gcucl(tk) (2-8)1

Ycl(tk) =Hcxcl(tk) + Ecucl(tk) (2-9)j

fork:= 0, 1, .. I
and for controller #2

Xc2(tk+l + T) = Fcx 2(tk + T) + Gcuc2(tk + r)(2-10)1

Yc2(tk + Tr) = Hcxc2(tk + T) + Ecuc2(tk + T) (2-11)1

for k =0,1,..

where

Xcl = controller 1 state vector (nc x 1)

yl= controller 1 output vector (nup x 1)

Xc2 = controller 2 state vector (nC x 1)1

Yc2 = controller 2 output vector (nup x 1)

FCa controller state matrix (n x nc)

6



I Gc =controller control input matrix (nc x n0 p)

Hc = controller output matrix (states) (nup x nc)

Ec = controller output matrix (inputs) (nup X i10p)

UThe plant (aircraft, actuator, and sensor dynamics) and the

g controllers are related by the equations

up(tk) wp(tk) Ylt)(-2

Ucl(tk) =Yp(tk) (2-13)

Uc2(tk + =pt + (2-14)

I Substitution of Equation (2-12) into (2-7) gives

X. x(tk+l) = *(tk+l-tk)xP(tk) +

ad *(tv+i1tk)(wp (tk) - ycldtk) (2-15)

an
Yp(tk+l) =Cpxp(tk+l) (2-16)

The quantity x (tk + T) can be written using the solution to

Equation (2-7) as

Xp(tk + T) = (tk + T~tk)xp(tk)+

*(tk + T-tk)[wp(tk) - Ycl(tk)02-7

I and

I ~yp(tk + T) *Cpxp(tk + T) (-8



The piecewise-constant inherent error e(t) is written in two

parts, eAMt and eB(t) as1

eA(t) = Ycl(tk) - Yc2(tk + T) (2-19)

for tk + T<t <t k+1l0< T< T, k 0, 1,.. and

eB(t) = Ycl(tk+l) - Yc2(tk + ..)(2-20)1

for tk+l S t < tk~ + T, 0 <T < T, k = 0, 1,. .

2. COVARIANCE ANALYSISI

Let the input wP(tk) be a Gaussian white noise random process

with zero mean, which is independent of x(0) (Reference 3). Then,

let P eA and PeB be the covariance of the errors e A and eB, respectively.j

Thus,

P eA (t) = E~e A(t) eA T(01J (2-21)1

for tk + T< t <t k~,O0< T < T, k = 0, 1,. . and

PeBMt = E~eB(t ) eB (t)] (2-22)

for t k+l .t < tk+l + T, 0 < T < T, k = 0, 1, . ..j

Since the input w p is a Gaussian white noise and the controllers

are discrete time controllers, the inherent errors eA and eB will be

random variables {eAl. eA2, e ANl, and {eBl, e 82, . . N)

as is the error in the interval tk + T and tk~

e is the error in the interval tk+l + T and tk,2

A23
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I
eAN is the error in the interval tk+N_1 + T and tk+N

m and

e 1 is the error in the interval tk+l and tk+l + T

eB2 is the error in the interval tk+2 and tk+2 + T

l
I

eBN is the error in the interval tk+N and tk+N + T

Let EA and eB represent the sample means based on N samples of

1 (eAl, eA2, . . , eAN} and {eB1, eB2, , eBN Thus,

FA= 1eAl + eA2+ +eMJ (2-23)

and

B =1 [eBl + eB2 +. + eBN (2-24)

N

From these two equations (2-23) and (2-24), the sample covarlances

Sof the errors based on the interval from tk to tk+N are

I ~eA = lN [et . A] [eAe _ rAJT (2-25)
3 N 1=1 -

and
N T (-6

PeB =1 i: eA I eA  A T  (2-26)

i For the steady state sample covariance of errors, k is the value

when the system is in steady-state.

I
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3. EXAMPLE

As the example, consider the closed-loop system shown in Figure 1
2 with a second-order plant and a first-order controller. Assume Wp

to be Gaussian white noise with zero mean and variance = 1 and let

the sample period T equal 0.0125 seconds.

From the block diagram in Figure 2, the plant is described by I

0 1

A 0 -1 01

200

and

The description of the digital controllers is obtained by starting

with the Laplace transform transfer function of an analog controller 1,
and performing the Tustin transformation (also called the bilinear 3
transformation) to obtain the z transformation and the discrete-time

state equations.
n - "1n "1 +O003s

The continuous controller transfer function is 1 + 0.03s

The substitution s = 2 z-1 performs the Tustin transformation.

This yields 03z2 -0.03 x 2 z-1
1 + 0.03s 1+ T zTI

I + 0.02s 0.02x2 z-1 .

10
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Then, the transfer function can be written as i
0.04T

Xcl = T + 0.06 - T2 + 0.08T + 0.0016
Yp T + 0.04 z - 0. 0 4 - T

0.04 + T f
where Xcl(Z) is the controller output and Yp(z) is the controller

input, which is also the plant output. A block diagram for digital I
controller 1 appears in Figure 3. 1

The state equations corresponding to Figure 3 are

Xcl(tk+l) = FcXcl(tk) + GcYp(tk)

Ycl(tk) = Hcxcl(tk) + EcYp(tk) I
where tk+I - tk = T and I

Fc = 0.04 - T
0.04 + T

Gc = 0.04T

T2 + 0.08T + 0.0016 1

Hc=1 1
Ec = 0.06 + T

0.04 + T ]

The state transition matrix *(tk+ltk) from equation (2-4) is

*(tk+ltk) =0 e 10T

The steady state sample variance of errors PeAss and PeBss from i
Appendix B are plotted in Figure 4 as a funtion of T. The diagrams to

i
I
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r the right of each plot show the times at which the controller outputs

I are sampled for the calculation of eA and eB. The sample variances

are largest when the times at which Ycl and Yc2 change are farthest

apart, as expected. The results indicate that some combination of

the two measurements of the channel inherent errors may be less affected

t by the amount of skews than either error taken alone.

1

!

L!'I

1
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SECTION III

STATE EQUATIONS, COVARIANCE, AND
EXAMPLE FOR NEW MODEL

According to the example of the basic model in Section 11, the

tolerance value for two-channel operation is the maximum value of the

steady-state sample covariance PeAss and is reached at T = T. If

the steady-state covariance is greater than the tolerance value, the

error is due to afailedchannel; if it is less than the tolerance,

the error is the inherent error due to sampling skew. However, the

above choice for the tolerance value may not be the best one to

distinguish the inherent error from the error due to a failed channel.I

For example, if the time skew of the second channel is small and

the sample variance is greater than the average variance for that time

skew, then it is likely that there is a failed channel. If that sample

variance, which is greater than the average variance for that skew

time, is less than the tolerance value (PeAss at T = T), the basic

model in Section II would indicate no failure.

To reduce the effect above, one possibility is for channel 11

to compute an approximation to the current output of channel 2. The.J

difference between the true output of channel 2 and the estimated

output of channel 2 will be close to zero, assuming that the estimate

is a good one. The tolerance value for this approach can be a small

value and it is equal to the maxlimm steady-state sample covariance of

the difference between the estimated value and the actual value. Thej

model described in this section estimates the output of channel 2

from the input of channel 1 and the details of this approach are in

16
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the following subsections.

1. SYSTEM CONFIGURATION AND DYNAMIC EQUATIONS

The closed-loop system configuration for this new model appears

in Figure 5, and is almost the same as the basic model in Section II.

The output yp of the plant, which consists of the aircraft, the sensor,

and the control actuator dynamics, is sampled by each of two digital

controllers. They use the same fixed sample period T, but there is

I a constant skew T between the starting points of the two samplers.

In Figure 5, the input of channel 1, yp(tk is used to compute

I Ycl(tk) and y*2 (tk + T*), an estimate of Yc2(tk + T) (T* is an estimate

of T). The difference between the external input Wp and Ycl is the

I input to the plant. The block named OBSERVER (See Appendix D for

details) computes x*(tk), an estimate of xp(tk) based on the two

quantities yp(tk-1) and Up(tk-l), which are the previous inputs of

channel I and the plant, respectively. y(tk + T*) is an estimate of

yp(tk + T) calculated from , X(tk), and Ycl(tk); this estimate is

I an input to the block named 2nd DIGITAL CONTROLLER #1. Finally,

Yc2 (tk + T*) is computed.

As in the basic model, the plant equations include the aircraft,

3 sensor, and actuator dynamics, as well as any dynamics associated with

the pilot input and the wind-gust model input. The plant equations

are assumed to be in the form

3 Xp = ApXp + Bpup  (3-1)

yp Cpxp(3-2)

I
17
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Without showing the details of the derivation (the details are avail-

3 able in Section II), the solution of equation (3-1) is

m Xp(tk+l) = 0(tk+ l, tk)xp(tk) + 0(tk+l, tk)up(tk) (3-3)

where

I Up(tk) = wp(tk) - Ycl(tk) (3-4)

The first function of channel 1 is to compute the signal that

is fed back to the plant according to the equation

Ycl(tk) = Hcxcl(tk) + EcYp(tk) (3-5)

and

Xcl(tk+l) = FcXcl(tk) + Gcyp(tk) (3-6)

for k = 0, 1, 2,

t The second function is to compute the signals that are used to

calculate the inherent error according to

Y2(tk +  =HcX*2(tk + *)+ EcYp(tk + " (3-7)

I and

X2tk+ l + *) FcX c2(t k + T* + GcYp(t k + T* (3-8)

for k = 0, 1, 2, Here,

Yc2 (tk + t*) is the estimate of Yc2(tk + T)

2 Xc2(tk + T*) is the estimate of xc2(tk + T)

U- and

y(tk + T*) is the estimate of yp(tk + T)

Up
19
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Note: All * variables are in channel 1 and the computations are

done at the times tk, tk+l, tk+2, , instead of tk + T,

tk+l + T, tk+ 2 + T,

Channel 2 computes the signal that is to calculate the inherent I
error according to I

Yc2(tk + T) = Hcxc2 (tk + T) + EcYp(tk + T) (3-9)

and

Xc2(tk+l + T) = FcXc2(tk + T) + GcYp(tk + (3-10)

From equation (3-3), we can write the equation of xp(tk + T)

as

Xp(tk + T) = *(tk + T, tk)xp(tk) + *(tk + T, tk)up(tk) (3-11)

and the input of controller W2 is 1
yp(tk + T) = Cpxp(tk + T) (3-12) 1

From Appendix D, the equation of the observed state xp(tk+l)

is

X t (t
Xp( k+l) = *(tk+l, tk)Xp(tk) + *(tk+l, tk)up(tk) I
+ *1(tk+l, tk)Yp(tk) (3-13) 1

where

Xp(tk) is the estimate of xp(tk)

and
T

*l(tk+l, tk) = f EXP(Ap(t))Gedt
0 3

I
20
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K where Ge is the feedback matrix of the observer which y*will approach

1 yp.
From equation (3-9), the equation Of x*(tk + T*) can be written

I as

X X(tk + T* = (tk + T~ tk)x(tk)

+ 41(tk + T*, tk)up(tk) (3-15)

where T* is the estimate Of T.

gIn computing YC*2(tk +T*), the variable y*(tk + T*) is calculated

from the equation

Y *(tk +T) =C X*(tk + T)(-6

I The piecewise-constant inherent error e(t) is written in two

I parts, eA(t) and e8(t) as

geA(t) = YC*2(tk + T*- Yc2(tk + T)(3-17)

IBt = Y*2(tk ~ + *) Yc2(tk +T)(18

Sfor tk+l 1 t <tk+1 + T, 0 < < T, k a 0, 1,.

12. COVARIANCE ANALYSIS

As in the basic model, wp is the Gaussian white noise, which has

zero mean and variance =1. Thus, the samples covariance of errors

3 eA and eB are

21
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PeA(t) = 1 N ( _ eA) (eAi - )T (3-19)

for tk + T < t < tk+l, 0 < < T, k = 0, 1,.. ,and

PeB(t) N ' (eAi - eA) T  (3-20)

for tk+l < t < tk+l + T, 0 < <_ T, k = 0, 1, .1

3. EXAMPLE

As the example, consider the system in Figure 2 of Section II.

PeAss and PeBss of equations (3-19) and (3-20) are plotted as a function j
of T for T* = 0, T/5, 2T/5, 3T/5, 4T/5, and T respectively in Figure 6

(from Appendix E). The diagrams to the right of each plot show the

times at which the controller output are used for the calculation of

eA (eq. 3-17) and eB (eq. 3-18). The sample variance (PeAss) are largest I
when T* is farthest apart from T (or Y*(tk + I*) is farthest apart

from Yc2(tk + T)) as expected.

From the plot, if T is equal to T, the inherent error (eA) of

this model is zero and the main disadvantage of the asynchronous operation

will be eliminated. If T* is close to T, the inherent error (eA) is

a small value. Then the deficiency of the basic model, which is de-

scribed at the beginning of this section, will be reduced. According to

the plot, the sample variance of eA (PeAss) is directly proportional 1
to the difference between T and T . Then T can be estimated by comparing

the sample variances of eA for the values of T* in [0, T] and T*

which corresponds to the smallest covariance will be the estimate of T.

The next section will describe the detail of the algorithm for estimating

T by using the result discussed above.

22
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SECTION IV

ALGORITHM FOR THE ESTIMATOR T

According to the example in Section III, the steady-state sample

covariance of eA (eq. 3-19) appears to be directly proportional to the

i Idifference between T and r*. That is, when the difference between T

and T* is large, the steady-state sample covariance of eA is large; when

'I i the difference is small, the covariance is small; and when the difference

a is zero, the covariance is zero. This relationship is the basis for the

I technique, described in this section, to estimate T*. The technique

uses the model of Figure 7 and the assumption that the steady-state

sample covariance of eA depends on the difference between T and T*•I
1. DESCRIPTION OF THE ALGORITHM

3 The basic procedure for estimating T* by using the model of Figure

7 is to change T" in an iterative manner until the smallest covariance

Uof eA is obtained. Let the single variable NT be the number of sub-

Iintervals in the interval (O,T) so that the length of each subinterval

in (O,T) is equal to T and (O,T) is divided into 0, T, .
UI NT-1x T, T. Let 0 and T be the first lower and upper limits in which

NT

T lies. Let T be the estimate of T. By comparing the steady-state

sample covariance of eA when T* is the midvalue between the lower and

the upper limits and that of CA when T* is the value which is greater

than the midvalue by T , one can determine whether to increase or to| NT

decrease T*, to reduce the steady-state sample covariance. If the

I previous steady-state sample covariance of •A (eq. 3-19) when T* is

I
25
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the midvalue is less than the current steady-state sample covariance

of eA, when T* is greater than the midvalue by T , then T must be
NT

between the lower limit and the midvalue. Therefore, this midvalue

is selected as the new upper limit of the new interval of T while the

t lower limit is unchanged. If the previous steady-state sample covariance

of eA is greater than the current steady-state sample covariance of

eA, then the lower limit is updated with the midvalue while the upper

limit is maintained. (Note that the values of the lower limits, the

upper limits, and the midvalues are restricted to the values 0, T

NT
2T, T.) This procedure is repeated until the new midvalue

NT
differs from the previous midvalue by T. Then the resulting interval

NT

is the smallest interval in which T lies and any value of r in this

, smallest interval can be used as the estimate of T.

When the smallest interval in which T lies is obtained, the

lower limit or the upper limit will be the previous midvalue. Then

I rthe last current midvalue will differ from the lower or the upper

limits by T. However, the midvalue is not necessarily equal to the
NT

exact midpoint between the lower and the upper limits. Figure 8

g lshows the two possible locations of the midvalue. (Note: the midvalue

in this report is the average value of the lower and upper limits in

which the average value is a truncated-integer division.) Since the

average value of the lower and upper limits is a truncated-integer

I division, then there are three smallest intervals of T which is shown

in Figure 9.

I

Vol 
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This technique is similar to the 'HALF-INTERVAL SEARCH' which

is a method for obtaining an approximate solution to an equation

f(x) = 0 and it is available in almost every numerical analysis book.

A flowchart of this procedure appears in Figure 10. Before

discussing the flowchart, let us define the variables which are used

in this flowchart. 4

As mentioned before, NT is the number of subintervals in (0,T)

and instead of using the real values of the subintervals in (0,T); I
namely, (1-1) x T , (2-1) x T , . , (NTI-1) x T, it is more

(NTl-l) (NTl-l) (NTI-I) I
convenient to refer to the numbers 1, 2, . . . , NTl. N4 and N5 are

the integers which represent the lower and upper limits of T respec- I
tively. The lower and the upper limits of the interval which T lies. j
N3 is the truncated-integer midvalue of N4 and N5.

NTAUI and NTAU2 are the integers which represent T" at the I
updated midvalue and the previous midvalue respectively. NTAU3 is

also the integers which represents T" at the midvalue plus one. PEASSI

and PEASS2 are defined to be the steady-state sample covariances of I
eA which correspond to NTAU and NTAU3 respectively.

The first step of the flowchart shows the initialization of

the key variables.

The second step shows the computation of the covariance of eA

when T* is equal to the midvalue of the interval. NTAUI represents "

the midvalue and PEASS1 is the corresponding covariance.

The third step provides the decision used in terminating the

routine. This routine will terminate when the current midvalue (NTAUI)

!f
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I is one subinterval apart from the previous midvalue (NTAU2).

The fourth step provides another value of the covariance when

T is equal to NTAU3.

The fifth step takes care of the comparison between the steady-

state sample covariance obtained from step 2 and that obtained from

1 step 4. The decision is made in this step in order to select a new

interval of T. The steady-state sample covariance of eA is directly

proportional to the difference between t and T*; therefore, if PEASSI

is greater than PEASS2, then the lower linit N4 is updated with the

midvalue while the upper limit, N5, is unchanged. If PEASSI is less

Ithan PEASS2, then N5 will be updated with the midvalue while N4 is

unchanged. The procedure goes back to step 2 and repeats until the

condition in the third step is met.

The remainder of the flowchart (after the difference of the current

midvalue and the previous midvalue is equal to one) shows the details

i of the technique for estimating T. As discussed at the beginning of

this section, the estimate of T can be selected by comparing the steady-

state sample covariance of every quantized number between the updated

j N4 and N5. The integer in this interval which corresponds to the

smallest :ovariance denotes the estimate of x.

If NT is an integer power of 2; i.e.,

NT = 2V

I then there is only one possible smallest interval in which T lies

i land it is type-b smallest interval, which is shown in Figure 9-a.

Furthermore, the maximum number of iterations to get the estimate of

T for any value of NT can be estimated by the maximum number of

I
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iterations when NT is equal to an integer power of 2. For example,

if NT is 8, then the maximum iterations is 3 as shown in Figure 11-a.

The last iteration (3rd iteration) is the smallest interval of T when the

difference between the previous midvalue and the current midvalue is

one. All these intervals are type-b smallest intervals. If NT is increased

by 1 (NT = 9), then the last iteration (3rd iteration) contains three I
type-b smallest interval and one type-c smallest interval and it is shown

in Figure 11-b. The same as NT = 8, the maximum iterations of NT = 9

is equal to 3. j
The situation when NT is 10, 11, and 12 are shown in Figure l-c,

d, and e, respectively, and the maximum iterations of these values of I
NT is still equal to 3. When NT is 13, the maximum iterations, which I
is shown in Figure 11-f, is 4. From these examples, the approximate

maximum iterations of any values of NT between the midvalue of 2V-l

and 2V and the midvalue of 2V and 2V+l is equal to V.

Another approach for calculating the estimate of T is to determine I
the steady-state sample covariance of eA for successive values of

'r in (O,T) until that covariance begins to increase. The T* which

corresponds to the smallest value of the steady-state sample covariance

of eA is the estimate of T. Since T* for this approach starts from

zero, the number of iterations to get the estimate of T depends on the I
value of T. If T is close to zero or a small value, then * can be

estimated in a few iterations. The maximum number of iterations of

this approach is equal to NT (when T is equal to T). This maximum number

of iterations is greater than the maximum number of iterations of the

previous approach. For example, if NT is equal to 2V, then the maximum ii
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number of iterations of this approach is equal to 2V' while that of

I the previous approach is only equal to V.

As an example, consider the system in Figure 2 of Section 11

with a second-order plant and a first-order controller. The external

input w p is Gaussian white noise, which has zero mean and variance = 1.

Let's assume T to be one of the values 0, T, .,T and let NT

Ibe 50. A FORTRAN program to simulate the entire closed-loop system

in Figure 7 and to implement the algorithm for estimating T Of the
above example is in Appendix F. All arrays of this program are the

same as those of the program of the new model.

The system in Figure 7 is simulated by the software in Appendix

I F. The software which implements the algorithm for estimating T,

* will wait until the state observers (x*) equal the state variables

(xp) and this system is in steady state. From Appendix A (this system

is in steady state at the time 200T) and Appendix C (the state observers

equal the state variables at time approximate equals 40T), the software

I will wait for 200T, then this software starts to implement the algorithm

for estimate Tr. As in the exam~ple in Section II and Section III, N

is given the value 100 in the equation for calculating the sample

covariance of the errors. With T which is supposed to be equal to

3T , this software computes the estimate of this T which is equal to
3 NT

3 3T and the number of iterations which is equal to 5.
NT

I I In this example, T is assumed to be one of the values 0, TO
NT

3 37
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2T, T, and t'* is restricted to be any value among 0, T,

NT NT

2T, , T. Therefore, T can be estimated exactly. In general,

NT
T will be between 0 and T, but it may not be one of the above values.

Thus, the estimate of T will generally not equal to T and the maximum

difference between T and T* is T. The numerical values of this
NT

difference can be reduced by increasing NT.

Since the time skew varies with time, it should be estimated

at regular, short interval of times. Thus, the execution time of thej

algorithm in this subsection for estimating T should be very small.

From the above example, the total execution time for estimating

T is the sum of the time for computing PeAss and the time for executing

the algorithm for estimating T. The time for executing the algorithm

for estimating T can not be reduced but the time for computing PeAssj

can be reduced only by decreasing the number of values of eA. (The

difference between YC*2(tk + T*) and Yc2(tk + T).)f

Since the sample covariance of eA in equation 3-19 is the estimated

value of the actual covariance of eA, the difference between the

estimated value and the actual value depends on the number of values

of eA used. By the 'Law of Large Number' of Probability and Statistics,

if N, which is the number of random variables of e A used, is large,

there is a high probability that WA (the sample mean of e A) will be

closed to the actual mean of these randomn variables. Then, there is

high probability that the sample covariance of e A will be closed to

the actual mean, too. Otherwise, if N is small, the estimated value

may diverge from the actual value. According to the algorithm for

38



I estimating T, the accuracy of this algorithm only depends on how

smooth the curve PeAss is. Then the covergence or divergence of the

estimated value (the sample covariance of e A) to the actual value

3 (the covariance of eA) does not concern to this algorithm. The value

of N can be selected as small as the curve of PeAss which is plotted

I as a function of T and T* is still smooth. However, with N = 10, the

curve of PeAss is as smooth as the curve of PeAss with N = 100.

2. CHARACTERISTICS OF THE TIME SKEW

I By assumption, the time skew is constant over a short period of

time. However, in reality the value of time skew will change slowly

with time. As discussed in Reference 1, the time skew can be assumed

to vary linearity with time and it is equal to T at the time which the

two samplers return to synchronism. This characteristic variation of

I. time skew is shown in Figure 12.

In the algorithm for estimating Tr in last subsection, T is

assumed to be changing very slowly. However, this algorithm cannot

j estimate T at that time at which T changes from T to zero. Another

means for estimating T is needed for this time interval.

I After the first estimate Of T is obtained, the characteristic

£ curve in Figure 13 can be drawn. Let OA in Figure 13 represent the
time that corresponds to the first T*, which is represented by AB.

I Since the time skew varies linearly with time, the estimate of the

time skew also varies linearly with time. The characteristic of r*

I can be drawn by using the slope AB and the time which T* equals Twf3is the approximate value which the two sample periods coin cide. Thus,
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an approximation to the time at which two sample periods coincide

(point a in Figure 13) is given by T x AB . Thus, after the first
OB 

t has been estimated, the time at which two sample periods coincide ,

is estimated from this latter equation.

1
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SECTION V

OPERATION OF THE NEW MODELI
This section describes the asynchronous operation of a digital

flight control system using the technique in Section 11. The output

of the first controller in the model used is always the input to the

plant. The outputs of both controllers are sent to the monitor, which

I will compare these signals using the tolerance value from the technique

in Section IV.

I. DUAL-REDUNDANT DIGITAL FLIGHT CONTROL SYSTEM.

A model for a dual-redundant digital flight control system is

I shown in Figure 14. The output of the plant is sampled by each of the

controllers, using a common sample period but having a fixed time skew

3 between them. The output of the first controller serves as the input

to the plant. The outputs of the controllers go to the monitor and the

monitor will first isolate the bad signal and then select or calculate

the best signal from the remaining good signals.

Figure 15 shows the details of the monitor. All the previous

l values of output of the plant (yp(tk_1))' the output of channel I

(Ycl(tk_1)), and the external input to the plant (wp(tk_1)) go to the

Iblock named OBSERVER, which is a subsystem designed to estimate the
l state variables of the plant. The observer produces Xp(tk), an estimate

of xp(tk). xp(tk + T*), an estimate of xp(tk + ), is computed from

34(tk), ycl(tk), and T*. Then YC2(tk + T*), an estimate of yc2(tk + 1*)

that is used to calculate the inherent error, is computed from
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X *(tk + T*) and the state variables of the 2nd DIGITAL CONTROLLER #1.

After the system in Figure 14 estimates T, both YC*2(tk + T*

and y c2(tk + T) are sent to the monitor logic. If the sample covariance

of the difference between yC*2(tk + r*) and yc2(tk + T) is greater

than the tolerance value which is discussed in Section IV, then

channel failures are probably present. The monitor logic will isolate

the bad signal (ycl or Yc2) from the channel failure.

As discussed at the end of Section IV, the execution time for

estimating T can be reduced by decreasing N in the equation of the

sample covariance of e A (eq. 3-19). Section IV also shows that there

is no difference in the estimate Of Tr for N equal to 100 or 10. Thus,

N in this section is selected to be equal to 10 for the purpose of

reducing the execution time above.

To estimate r, the 2nd DIGITAL CONTROLLER #1 executing the algorithm

in Section IV for estimating T Will wait 50T seconds (T = 0.0125 second)

until the state observer (x P) is equal to the state variables (x P)

(The details are in Appendix C.). Then the 2nd DIGITAL CONTROLLER #1

will store the next ten values of e A for estimating T. After 50T

seconds, T can be estimated in the time required for obtaining 10

values of e A Plus the time for estimating T. Since the ten values of

e A (from 51T second to 60T second) are used to estimate T, then this

T * is the estimated value of T between 51T second and 60T second.

While the 2nd DIGITAL CONTROLLER #1 is in the process of estimating

Y ~cl and y c2 are always sent to the monitor. Then, for the time

interval o to the time at which the first T* is estimated (50T seconds

are required for the state observers to equal to the state variables.),
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the monitor logic should be disabled.

As in Reference 1, let P be equal to the period required for

T, and T2 to return to synchronism or

I ~p =TT 2

LtTb - T2

Let e be the fractional error between the clock crystals controlling
the separate processors; i.e.,

e =T 1 - T2
T1

then P =T 2 = T - T1  T1

e e e

With T1 = 0.0125 second and e = 0.017, it requires 10,000 samples

i of T, and T2 to.return to synchronism. Thus, T changes very slowly

with time, then the T* in the previous time interval can reasonably

3 be assumed to be the estimated time skew over the current time interval.

As discussed in Section IV, the time at which the two sample

I periods return to synchronism is important because T at this time

changes abruptly from T to 0. For the time at which T is equal to T

or 0, it can be estimated by the technique described in the last sub-

section of Section IV.

After T is estimated, the monitor will compare yc2 (tk +

m and Yc2(tk + T). If the difference of these two signals is greater

than the given tolerance value discussed in Section IV, then a channel

failure has occurred.

1 47
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2. TRI-REDUNDANT DIGITAL FLIGHT CONTROL SYSTEM

A model for a tri-redundant digital flight control system is

shown in Figure 16. The output of the plant is sampled by each of

the controllers, using a common sample period but having two fixed

time skews T, and T2 between channel I and 2, and channel 1 and 3,

respectively. The output of the first controller serves as the input

to the plant and the outputs of these three controllers go to the

monitor, as in the model of the previous subsection.

Figure 17 shows the details of the monitor. The output of the

first controller is used to calculate Yc2(tk + T1), an estimate of

Yc2(tk + Tl), Yc2(tk + r2), an estimate of Yc3(tk + T 2), where

T and x2 are the estimated values of T, and r2 , respectively. Using

the same technique as discussed in the last subsection, T, can be

estimated from Yc3(tk + + and Yc3(tk 2).Since the maximum

differences between T4 and Tl , and T* and T2 are equal, then the tol-

erance values between channel 1 and 2, and channel I and 3 are equal.

In comparing channel 2 and 3, the tolerance value is approximately equal

to the maximum covariance of the difference between YC2(tk + TI) and

Yc3(tk T). Thus, if the covariance of the difference between

Yc2(tk + Tl) and y c3(tk + T2 ) is greater than the tolerance value

between channel 2 and 3 described above, the malfunction must have

occurred in channel 2 or channel 3.

The model for more than three channels can be described in a

manner similar to the model for the three-channel system. For example, I
consider a four-channel system. This system has three time skews:

the time skew between channels 1 and 2 (TI), the time skew between
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channels 1 and 3 (T2), and the time skew between channels l and 4

(T3 ). The 2nd DIGITAL CONTROLLER will estimate these three time

skews for the estimated value of the output of channel 2, the estimated

value of the output of channel 3, and the estimated value of the out-

put of channel 4. As in the three-channel system, the maximum differ-I ences between T, and nT, the estimate of TI, ' 2 and r , the estimate

of T2 , T3 and T*, the estimate of T are equal to T/NT. Then the

tolerance values of channels 1 and 2, channel 1 and 3, and channel I

g and 4 are equal to the maximum sample covariance between the estimated

value and the actual value of any one of the outputs of the controller

I (the maximum sample covariance of the differences between the estimated

and the actual values of the output of the second channel, the estimated

Iand the actual values of the output of the third channel and the estimated

and the actual values of the fourth channel are equal). For channels 2

and 3, the tolerance value is equal to the maximum covariance of the

l difference between the estimated values of channel 2 and 3. Similarly,

the tolerance value of channels 2 and 4, and the tolerance value of

channel 2 and 4 are equal to the maximum covariance of the differences

I between the estimated values of channel 2 and 4 and channel 3 and 4,

respectively.

I
I
I
I
I
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SECTION VI

COMPARISON BETWEEN BASIC MODEL

AND NEW MODEL

The basic model can distinguish inherent errors from the errors

induced by channel failures by using the maximum steady-state sample

covariance of eA as the tolerance value. If the measured covariance

of e is greater than this tolerance value, then the monitor indicates

a channel failure. Otherwise, if the measured covariance of eA is

less than this tolerance value, the monitor indicates that only inherent

errors are present. However, this tolerance value is not the best

value to use to distinguish inherent errors fromi errors induced byI

a channel failure. If the measured covariance of e A is greater

than the covariance of e A of the present T but is less than the maximum

steady-state sample covariance of eA (T = T), then the basic model would

not indicate the channel failure. To reduce this deficiency, the new

model computes a tolerance value equal to the maximum steady-state

sample covariance of the difference between y~(~+ T* and y~2 t )

Since this tolerance value is very small when it is compared with the

tolerance value of the basic model, the deficiency of the basic model3

discussed above can be reduced.

The number of tolerance values of the new model depends on the1

number of channels. There is one tolerance value for two channels,1

two tolerance values for three channels, four tolerance values for

four channelsand so on. For the basic model, there is only one

tolerance value for any number of channels.
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The next comparison is the hardware structure. Both models (the

basic model and the new model) require a computer to calculate the

covariance of eA. But the software of the new model is more complicated

than that of the basic model. The software of the new model is used to

compute x*, an estimate of Xp, X*(tk + T*), an estimate of xp(tk + T),

Yc2(tk + -*) an estimate of yc2(tk + T), T*, an estimate of T, and

the sample covariance of eA (The difference between Ycl(tk) and
Yc2(tk + 3) is eA of the basic model. The difference between y*tk +

l and Yc2(tk + ) is eA of the new model.).

I
I

I

I

I

I

I
I
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SECTION VII

SUMMARY AND RECOMMENDATIONS

Two models for the asynchronous digital flight control system

are described in this report. The basic model is almost the same asI

the basic model in Reference 1 and 2 except that the input to the

plant is the difference between the external input and the output of

the controller. However, the input to the plant is always the output

of the first controller.

As discussed in Reference 1, this basic mod el is roughly equivalentI

to the voter named 'median select' (the upper median for a four-

channel system or the lower median for a three- or four-channel system

is used as the voter output) when the channel outputs are eitherI

monotonically increasing or decreasing in time. Figure 18 illustrates

the example of an asynchronous, dual-redundant digital flight controlI

system which produces a monotonically increasing output. Channel 1

produces the sampled outputs at times tk, tk+l, * . . , for k = 0,

1, ... and channel 2 produces the sampled outputs at times tk,I

tk + T, t k+l + T,. , for k = 0, 1......A comparison monitor

which compares the magnitudes of the outputs of the two channels willI

observe differences illustrated as e A and eB8 in Figure 18.

Since the pilot's commiand or wind - gust which changes all the

time is the external input, then the random signal (Gaussian white3

noise) is chosen to be the external input of the models. A comparison

monitor in this case (Gaussian white noise is the external input.) will

compare the signal by using the covariance of eA instead of eA.
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According to the results of the basic model in Section II, the

steady-state sample covariance of eA (PeAss) is largest when the times j
at which Ycl (output of the first controller) and Yc2 (output of the

second controller) change are farthest apart. Then the tolerance j
value of this model is equal to the maximum steady-state sample

covarlance of the difference between Ycl(tk) and yc2(tk + T) (when I
= T). l

The new model described in Section III is an extension of the

basic model in Section II. As in the basic model, the external input I
to this model is a Gaussian white noise. This model tries to reduce

the deficiency of the basic model described at the beginning of Section 1
III by decreasing the tolerance value. There are two functions per- J
formed by the first channel of this model. The first function is to

compute the control output to the plant. The second function is to f
compute a signal used to calculate the inherent error; this signal is

an estimated value of the output of the second channel.

According to the results of the new model in Section III, the

steady-state sample covariance of the difference between Yc2(tk + T

and yc2(tk + T) is directly proportional to the difference between

and T*. If T* equals T, the difference between yc2(tk + T*) and

yc2(tk + T) is equal to zero. Then the tolerance value of the new

model depends on the difference between T and 'r . 1
The algorithm in Section IV for estimating T is based on the

results above. Let ' and * be one of the values 0,_T, . , T. 1 i/i

NT..

Then this algorithm computes the steady-state sample covariance of the

I
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difference between Yc2(tk + T*) and Yc2(tk + T) when T* is the midvalue

between the first lower limit (0) and the first upper limit (T). If

the covariance of the difference between y*2(tk + T*) and yc (tk + T)

of this first T* is less than that of the next value of this first

then must be between 0 and the new upper limit (the midvalue).

Otherwise, if that of this first T* is greater than that of the next

value of this first T*, then T must be between the new lower limit (the

midvalue) and T. By using this scheme, the interval containing T can

be reduced by half for each iteration. The algorithm will repeat this

technique until the current midvalue differs from the previous midvalue

by T. In the last interval, any values of T* which corresponds to the
NT

smallest steady-state sample covariance of the difference between
y* (t

Yc2 k + T*) and yc2(tk + T) is the estimate of T. In general, T may

not be one of these values O, T, . , T, then the maximum difference
NT

between T and T* is 
T.

The results from Section III and Section IV can be applied to

the asynchronous operation of digital flight control system. For a

two-channel system, the DIGITAL CONTROLLER #1 in the monitor will wait

until the state observers (x*) equal the state variables (xp). Then
p

the DIGITAL CONTROLLER #l will execute the algorithm for estimating

T by using the next 10 values of the difference between yc2(tk + T

and yc2(tk + r). During the time DIGITAL CONTROLLER #1 is estimating the

first T*, the monitor will not compare the signals Kf2(tk + T) and'I
Yc2(tk + T)). After the first c* is estimated, the monitor will compare

~.I

I
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the signal by using the first T* until the new .r* is estimated. Then

the monitor will compare the signals by using the new T* and so on.

However, during the time in which the first -r* is estimating (after the

state observers (x*) equal the state variables (x )), the monitor can

compare the signals by using the tolerance value which is equal to the

sample covariance when T* = 0 and T = T. T * can be estimated for every

time period except the time at which T changes from its maximum value

to its minimum value (The details are in Section IV.).

For a system with three or more channels, the number of time skews

depends on the number of channels. For example, there are two time

skews for the three-channel system: Tl. the time skew between channels

1 and 2; and T2, the time skew between channels 1 and 3. For the

four-channel system, thereis one more time skew: TP the time skew

between channels 1 and 4. All these time skews can be estimated by

using the same technique as in the two-channel system. After thesej

time skews are estimated, the monitor will compare channels I and 2,

channels 1 and 3, and so on by using the estimated output of channel

2 and the actual output of channel 2 for channels l and 2 and so on. If

the sample covariance of the difference between the estimated and the

actual values of channels l and 2 or channels l and 3 and so on is greater

than the tolerance value of the new model, then the channel failure is

occurred. For a pair of the channels 2, 3, . .. , the monitor will

compare a pair of the channels by using the estimated outputs of that

pair of the channels. For example, the monitor will compare channels

2 and 3 by using the tolerance value which is the maximum covariance1

of the difference between the estimated values of channels 2 and 3. If



the sample covariance of the actual outputs of channels 2 and 3 is

greater than the above tolerance value, then a channel failure has

I occurred.

The last section describes the comparison between the basic

model and the new model. The disadvantage of the basic model is that

* the basic model would not indicate the channel failure although the

sample covariance is greater than the sample covariance of the present

I T. The new model can reduce this deficiency by reducing the tolerance

value. However, the new model requires more hardware and is more

complicated to simulate.

It is recommiended that the work be continued to accomplish the

following:

1 1. The software in this report can only implement the example

in Figure 2. Then the software for simulating the models should be
developed to be the general software. Thus, software for simulating

I a class of systems is needed.

2. Increase the complexity and generality of the models and

I covariance analysis to include such features as multirate sampling,

I computational delays, processor word-length effects, sensor noise and

additional voter algorithms.

3. To reduce the complexity of the asynchronous operation of a

digital flight control system using the technique in Section IV, a

I model of a new algorithm for a dual-redundant system is shown in Figure

19. In this model, T is constant and equal to T/2. After the state

observers are equal to the state variables, the signals 4 2 (t k # T2)

3- and yc2(tk + T) are sent to the monitor logic. The tolerance value to
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use in this case is equal to the sample covariance of the difference

between Yc2(tk + T/2) and Yc2(tk + 0). This algorithm is simpler than

the algorithm described in Section V because T* is constant. But the

tolerance value of this new algorithm is larger than the tolerance

value of the algorithm in Section V. However, the tolerance value of

this algorithm is less than the tolerance value of the basic model by

half. j
A model of a new algorithm for a tri-redundant system is shown in

Figure 20. In this system, the tolerance value between channels 1 and

2, and channels 1 and 3 are equal to the sample covariance of the

difference between Yc2(tk + T/2) and Yc2(tk + r). It is not necessary

to estimate yc3(tk + T/2) because Yc3(tk + T/2) is equal to Yc2(tk + T/2).

However, the tolerance value of channels 2 and 3 is the same as in the

basic model.

4. The number of values of eA for computing the sample covariance

should be studied with the objective of using as few values as needed

for a reasonable reduction in the variability of the estimate.

62 1
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S
APPENDIX A

SOFTWARE FOR THE BASIC MODEL

1. FLOWCHART AND DESCRIPTION OF MAJOR COMPONENTS AND SUBROUTINE

As in Reference 1, the main program of the software for the

basic model is. called PROGRAM SKEW. Its major computational tasks

are to develop the state variable model of the complete closed-loop

system and to compute the controller outputs, the errors eA and es,

and the steady-state covariances of the states.

A flowchart for the program appears in Figure 21. The blocks

in this figure correspond to the clearly identified components of the

main program.

The first block shows the data input. The variables are self-

explanatory except for the quantities NT, NTAU, and NT2. Since a

numerical integration is required to compute *(T), and #(T), it is

necessary to quantize the time interval (O,T]. The user specifies

the degree of quantization by specifying NT, the number of subintervals

in [O,T] which are to be used in the computation. For convenience,

the subintervals of [O,TJ are designated 1, 2, . to NTI; where NTI

is equal to NT + 1. NTAU represents the value of which is computed

within the program as

Ti = (NTAUI 1) * T B-1

(NTI - 1)

and

NTAU. ITAU NT + 1 B-2
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[Read in heading and description of the plant and
Sthe controller ;nup ,npj~nwpjnop ncAp,Blp,Cp ,Fc#GOct

Hc,T. NT, and NTI

ICompute the Gaussian white noise by using1I
[Calculate *(T i). and O(T) by using eq.2-4 j

Calculate lf(t), and v(T) by using the trapezoidal I
rule for numerical integration

Calculate xc2(tK+r), Yc2(tK-l+r) by using eqs. 2-10

and 2-11 j

Calculate xcl(tK+l), ycl(tK) by using eqs. 2-8 -

SCalculate eA, and eB by using eqs. 2-17 and 2-18
iI

Calculate PeAss' and PeBas by using eqs. 2-23 and 2-24

FIGURE 21 FLOWCHART DESCRIBING THE MAJOR COMPUTATIONS
OF PROGRAM SKEW *1
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for ITAU= 0, 1.2, ,NT2

where NT must be an integer.

In block two, the gaussian noise is computed by using the sub-! I
routine named RANDU. This subroutine is available in most IBM-based

computer systems.

The third block specifies the calculation of #(Ti ) and #(T).

I The computations require * from block 2, so that the required numerical

integrations can be performed. The numerical integrations use the

I trapezoidal approximation.

I In block five of Figure 21, the second controller state variable

Xc2 and the second controller Yc2 are calculated by using equations

I Xc2(tk + T) = FcXc2(tk- 1 + T) + GcUc2(tk.1 +

Yc2(tk-l + T) = HcXc2(tk-l + T) + EcUc2(tk_ 1 + T)

I In block six, the first controller state variable xcl and the

first controller output ycl are calculated by using equations

Xcl (tk+l) = FcXcl(tk) + GcUcl(tk)

I Ycl(tk) = HcXc2(tk) + EcUc2(tk)

I In block seven, the inherent errors eA and e, are calculated

by using equations

eA(t)Yc (tk) - Yc2(tk +
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I

for tk + T <t < tk+l 0 <T < T, k = O, 1,...

e(t) = Ycl (tk+l) - Yc2(tk + T)

for tk+l <__t < tk+l + T, 0 < T < T, k =0,1,... 

The final set of computations is given in block eight. The steady 1
state covariance PEASS and PEBSS are calculated by using the equations

PeAss N N [e Ai " Ai-e AI

=eBss 1 N . T 
weereN i=l Bi- eBeBi B

where

eAi and eBi: are the errors when the system is in steady

state

and 1
eA and 'FB: are the sample means of N samples of eAi and e Bi

2. INSTRUCTIONS FOR USING THE PROGRAM

The first data card is used to provide a message which will be

printed at the top of a new page of output. The next card specifies 1
NP, NUP, NWP, NOP, and NC using the format (513). These quantities

are the actual dimensions of the plant and controller. Next, the

matrices Ap, Bp, Cp, Ec , Fc, Gc, and Hc are specified in succession,

one row and one card at a time, using the FORMAT (FlO.4, 213). The

next card specifies T, NT, and NT2 using FORMAT (FlO.4, 315). Table

1 shows what values to assign to the given arrays.

The computer program listing for PROGRAM SKEW of the basic model

t i
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m written in FORTRAN appears in appendix B. PEASS and PEBSS for each

I value of T are shown at the end of the listing.

TABLE I

REQUIRED DIMENSIONS OF ALL ARRAYS

AP (NP, NP) YP (NOP)
I BP (NP, NWP) XPTAU (NP)

CP (NOP, NP) YPTAU (NOP)

FC (NC, NC) UP (NUP)

GC (NC, NOP) W (1000)

HC (NUP, NC) YCl (NUP)

I EC (NUP, NOP) XCI (NC)

ECCP (NUP, NP) YC2 (NC)
PHST1 (NP, NP) XC2 (NC)

I PHTAU (NP, NP) El (NUP)

PHTAUI (NP, NP) E2 (NUP)

[ PSST (NP, NUP) EA (1000)

PSTAU (NP, NUP) EB (1000)

PSTAUI (NP, NUP) PEASS (30)

[ XP (NP) PEBSS (30)

Since the example is in the steady-state at time approximately equal

200T (T = 0.0125 second), then the first value of I in equation (2-23),

(2-24), (2-25), and (2-26) is 201 and let's assume the value of N in

these equations equals 100.

I
I
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APPENDIX B8

COMPUTER PROGRAM LISTING
FOR

PROGRAM SKEW AND EXAMPLE
OF OUTPUT WRITTEN IN FORTRAN
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COMMON ELEMXYMAX IMAXJ
DIIMENSION AP(2,2) PBIP(2v2),CP(lv2) ,FC(2,2) iGC(2,1) ,PHIT'(4,4),
I HC(2v2)vEC(2w1)wPHITI(4,4,l01),PSITI(4,4),PHTAU(4,4) ,PSTAU(4,4),I 4 INJ3EX(4) ,W(4000) ,PS(4,4) ,YC1(2) ,PSIT(4,4) vXW3(2),
5 YC2(2) ,E1(2) ,E2(2) gXP(2) ,XPTAU(2) ,XPI(2),YP(2) ,YPTAU(2 ),
6 XC:,1(2)PXC2(2) ,AM(4y4)PPT(4,4) ,P1(4,4) ,13(494),
7 1:2(4,4) YD3(4) ,XW1(2 vXW2(2) ,ECCP(4,4) ,D(4,4),
,3 FEASS(5O)',PEBSS(50)YEA(i100)rEB(110O)

CCCCC PROVIDE MAXIMA FOR CALLED ARRAYS
11PM -2
I4UPM -2

NWPM -~2

NOFM 1.I. NCM =2
NHM =- NF'M + NUPM
NFM NPM + 2*NCM
NRRM 2*NPM +4

L. READ' INPUT DATA

C
WRITE ( 6v899)

8 99 FORMAT('I')
100 REAf'(SP900) I1D
900 FORMAT (20A4)

WRITE(6P902) IDE
9 02 FO)RMAT( 'I ' v20A4)

READ(5yi,906 )NPPNUPYNWPYpNOPPNC
96FORMA(513)

WRITE(6v908) NPPNUPrNWPYNOPPNC
?08 FORMAT('ONO, OF' PLANT STATES ='u13/

I NO* OF PLANT" INPUTS = 'P13/

12 NO* OF DISTURB4ANCE INPUTS ='r 13/
4 NO. OF PLANT OUTPUTS ='r 13/

5 NO. OF CONTROLLER STATES (EACH CONTROLLER) 'P13)
WRITE(6v910)

91i0 FORMAT(OPLANT STATE MATRIX -- AP')
110 DO 112 I = lyNP

READ(59:t4) (AP(IrJ)r.J=1,NP)F 112 WRITE(6,913) (AP(IvJ)vJ=1vNP)
913 F*ORMAT(' 'PSG13&6)
914 FORMAT(6FI2.7)
915 FORMAT(8G13.6)

1 FOMT'PA OTO INPUT MATRIX -- IP')

RE(69)(P(IJ)J1,rNUP)

g bRITE(6v918)

18 FORMAT('OOE'SERVER MATRIX-- GE')
30 1D0 132 I-lpNP

1 READ(5v9l4) (GE(IrJ) ,J1,NWP)

12 WRITE(6,9l3)(GE(IJ),JmlNWP)
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WRITE(6Y920)
920 FORMAT('OPLANT OUTPUT MATRIX -- CP')
140 rDO 142 I=1,NOP

READ(5v914) (CP( I J) ,J1 ,NP)
142 WRITE(6v913) (CP(IyJ)wJJ1vNP)

WRITE(6v922)
922 FORMAT('OCONTROLLER STATE MATRIX -- FC')
150 DO 152 1 =lNC

READ(5v9l4)(FC(IfJ)rJ=lvNC)

152 WRITE(6v9l3)(FC(IpJ)pJ=1vNC)I
WRITE(6p924)

924 FORMAT('OCONTROLLER CONTROL INPUT MATRIX GC '

160 DO 162 I:=lPNC
READ(5v914)(GC(IpJ)vJ-1pNOP)

162 WRITE(6v913)(GC(IvJ) pJ=1vNOP)
WRITrE(6p925)

925 FORMAT('0CONTROLLER OUTPUT MATRIX (STATES) -- HC')I
170 1.10 172 I~1vNUP

READ(5p9l4) (HC(IvJ) ,J=1 ,NC)

172 WRITE(6p9l3) (HC(IvJ) ,J=1 ,NC)I
WRITE(6,926)

926 FORMAT('0CONTROLLER OUTPUT MATRIX (INPUTS) -- EC')
180 DO 182 I=1,NUP

READ(5,914) (EC(IvJ) ,J=1,NOP)
.1.82 WRITE(6v913) (EC(IpJ) ,J=:1,NOP)

READ(5,928) TYNT
928 FORMAT(F1O.4YI5)

XNT =NT
DELTA =T/(XNT-1)
WRITE(6v930) TrNTJ

Y30 FORMAT('1T = 'PF10.4/
I / NT Y5

3 ' T =SAMPLE RATE.'/
I ' DELTA = T/(NT-1) = INCREMENT USED IN THE NUMERICAL'/
7 / INTEGRATIONS TO COMPUTE PSITAUvPSITvPSIT2'/
9 '1 PSITAUl USING TRAPEZOIDAL RULE.'//)
WRITE(6y931)

931 FORMAT(2XY' W IS THE EXTERNAL INPUT (WHITE GAUSSIAN NOISE WITH
I 'MEAN = 0.0v AND VARIANCE =1.0')

C
C
C GENERATE WHITE GAUSSIAN NOISE WITH MEAN 0 AND VARIANCE I

IX = 11111
DO 192 I 1,l1200
A =0#0
DO 193 J = 1,12
CALL RANDU(IXPIYPY)
IX ly

193 A =A+Y
192 W(I) =- A-6

DO 1199 I = lrNUP

DO 1199 J = lpNP
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ECCP(IPJ) 0.0
['0 1199 K - 1NOPI1199 ECCF(IPJ) &CCP(IPJ> + EC(II )*CF(KYJ)

802 FORMAT(5XY5613.6)
835 FORMAT(SXS613,6)Ic
C CALCULATE PHI'I(0)vPHIT(DELT*AFiPilT(2*DIELTA),,..,PFHIT(T)

C,

£iELHLF [::'ELTiA/2.0

LU 402 11 JiNP
ri0 402 JJ jyrJF
IF(11.EQ.JJ) GO TO 403
P-HITl(IIY,JJv1) 0.0
00) TO 402

40.3 PHlTJAiL,J,)J) 1.0
4 02. CON'T I NUE

['0 4 11 :: 2 7NT
TI =T14-E:'LTA

PHITl(2yJ1,11) =0.0

4 FHIT1(2y2vlJ.) EXP(-10.*TI)
[DO 400 11 = lNP
DO0 400 JJ = INP

400 PHIT(IlJJ) :- PHIT1(IIr,J.JYN'T)
WRITE(6y860)

860 FORMAT (5X Y'PH IT')
[DO 861 1 -IYiNP

1361 WRITE(6v802) (PHIT(I9vJ) ,J:=1,NP)

DO :1800 KK2 1,J.6
IAU N1*0.0125/5.0
NJ-NI+ I
NTAU (KK2-1I)*10
NrAU NTAU + I

1. INITIAL VALUE YC2(-TIME+TAU), YC3(-TIME)p YC1(-TIME)
DO 31 I 1 vNUP

321 ll YC2(I) -U YC2(I)
C FROM INITIAL VALUE XP(TIME)p AND YP(TIME) ARE EQUAL TO ZERO

DO 35 1 = J.PNP
35 XP(I) =0.0

DO 36 1 = IYNOP
36 YP(I) =0.0
C FROM INITIAL VALUE XCI(TIME+T)p YC1(TIME) ARE EQUAL TO ZERO

DO 37 1 =19NC

Xl'i(I) 0.0
37 XC2(I) 0#0

DO 52 1IrlNUP
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52 YCI) 0.0
C
C
C CALCULATE PHIT(TAU)
C
C

IDEL = 0
DO 5000 1I= 19NT
IDEL =IDEL + 1
IF(IE'EL.EQ.NTAU) GO TO 16
GO TO 5000

16 110 17 IT rN
D 0 17 .)J I NF*

5000 CONTINUE

c CALCULATE PSIT(TAU)PF*SIT(T)

DO 550 1 19NP
DO 550 J 1 vNWP

PSTAU(Iy,)) - 0.0
fPSIT(IPJ) = 0.0
.b 0 5 51 K :-= vN P
PsTrAU(Ig,J) =:PSTAU(IrJ) + FPHITl(IvKPNTAU)*41P(,,)

5.51 PSIT(IrJ) = PSIT(I,J) + FHITl(IyKvNT)*BlF'(KJ)
DO 552 1 1YNP
DO 552 J = 1NWP
PSTAU(IYJ) DELHLF*PSTAU(IvJ)

552 PSIT(IvJ) =DELHLF*PSIT(IYJ)
60 DO 61 Il 2PNT

12 =NT-11+1
DO 62 1 = lvNP
DO 62 J = 1,NWP

62 PSIT(I,'J) =PSIT(IrJ) + FS(IrJ)
DO 63 1 = 1,NP
DO 63 J =1PNWP
PS(Ir~J) = 000
DO 63 K = IPNP

63 PS(IPJ) = PS(IYJ) + PHIT1(IrKY12)*BIP(KPJ)
DO 64 1 = 1vNP
DO 64 J = 1PNWP

64 PS(IJ) = DELHLF*PS(IPJ) *
DO 66 J = 1PNWP

66 PSIT(IPJ) - PS(IvJ) + PSIT(IPJ)
61 CONTINUE
67 DO 68 1 = lvNP

DO 68 J = 1PNWP

68 PSCIFJ) = 0.0
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[F'(N'T'AI.JEo. ) GO TO 55
13 0 T 0 6 9

55 DO 58 II = 1NP
DO 58 Jj 1 YNWP

58 PSTAU(II1JJ) =0.0
3 (30 TO 77

5 9 DO 70 11!: 2PNTAU
12zr-:NTAU-I1+1
T 0 71 1~ =1:NPIDO 71 J =1,NWP

71 P'STAU(IPJ) :: PSTAU(IvJ) + PS(IvJ)
DO) 72 1I1vNP
DO0 72 J I PNWP
Ps (I IJ) 0.0
DO 72 K = 1NP

72 PS ( I ,J) r.PS(IYJ) + PHI*Ti(IK,12>*Et1P(KJ)
LID 73 1 1 P NP
DO 73 J 1 ,NWP

73 PS ( I y J) 1:ELH-F*FS ( x ,J)

DO -76 1 1 ,N

DO: 76 J I.,NWP
PSTAU(If,J) :=PSWIJ) + PSTAU(IrJ)

70 CONTINUE
V.....CONTINUE
C::
C
C START TIME LOOP

TIME =10

C

NN1 1
LD 412 1 1PNOP

4;12 LJP(I)- W(NNl)-YC1(I)
C C."ALCULATE xP'(rIME+TAU)p AND YP(TIME+TAU)
C

DO 4-0 1. =:IvNUP
430 E2(I) = YC1(I) -YC2(I)

jDO 253 1. 1,NP
= 0. 0

DO 254 J 1PNP
254 (1 0 + PHTrAU(IPJ)*XP(J)
25.3 XW1(I) =2

I D0 256 J = 1NUP
256 a a + PSTrAU(ItJ)*UP(J)
255 XW2(I) =0[ DO 257 I1 1vNP

L257 XPTAU(I) XW1(I) + XW2(I)
DO 260 1IY1NOP
0 =0.0IDO 261 J 1iNP

73



261 Q 0 + CP(I,1J)*XPTAU(J)
260 YPTAU(I) =0
C
C TIME =TIME + T
C CALCULATE XC2(TrIME+T+TAUJ) AND, YC2('TIME+"TAU)
C

DO 300 1 1 vNUP
0 0. 0
DO0 301 J IYNC

301 0 Q +f HC,(IJ)*XC,2(J)j
300 XW1 (I) !::()

DO 302 I 1 'NUP
QA 0.0
110 3 03 J 1 Y NO 0IF

303 U (A + EC(IvJ)*YP'TAU(J)
302 XW2(I) =:[

DO 304 1 :1,IYNUP 1
304 YC2(I) =XW1(I) + XW2(I)

DO 305 1 1'NC
Q 0.0
['0 306 J 1 YNC

306 0 -~0 + FC(IPJ)*XC2(J))
305 XW1(I) = 0

DO 30'?7 1I v NC
O 0.0
DO 308 J = 1vYNOP

~308 0 0 + GC(IvJ)*YPTAUCJ))
307 XW2(I) =0

1)0 309 I : 1tMC
309 XC2(I) -XW(I) + XW2(I)

C CALCULATE El

DO 290 1I: ivNLUP
2.90 E1(I) :. YC1(I) - YC2(I)

C CALCULAT E XP(TIME)v AND' YP(TIME)
C
373 ['0 500 I1 1vNP

(a 0 . 0
DO 501 J 1YNP

501 Q Q + PHIT(IvJ)*XP(J))
500 XWi(I) = 0

DO 502 I = I1vNF'
(a 000
DO0 503 J = 1,NUP

"J03 (A 0 + PSIT(IvJ))*UP'(J)
502 XW2(I) = 0

[D0 504 I = 1PNP
504 XP(I) = XW1(I) + XW2(I)

DO 507 I = lvNOP
O = 0.0
D0 508 J = liMP

508 0 0 + CP(IrJ)*XP(J)
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5 0 7 'P(I1) -: 0
C
c CALCULATE XCi(2*TIME)j, AND YC1(TIME)

tiO 700 1 1l'NUP
a 0.0
DO0 701 J 1YNC

701 U + HC(IlvJ)*XCJ(J)
a/700 XWI) U
IDO 702 1 -1IYNUP

DO 703 J =1vNOF*
703 Q 0 + E(I,lJ)*YP(J)
/02 XW2(T) =

DO1 704 I1 NUP
704 YC1(I) :7XW1(I) + XW2(I)

DO 705 1Ip1NC

rDO 706 J 1PNC
706 U 0 + FC(IsJ)*XC1I(J)

07(IJ XW1(I)in
rDO 707 1 i'l-NC
Q0 0. 0
00 708 J 1v: PNO

/08 ( 0 Q + 3 C(I:,J*Y P(
// XLJ2(1) ::UIO ['009 1 1,:I NC

79 XC1(I) :::XI1(I) + XW2(I)
NN1 NN1 + 1
Dit 221 1I: I v NOP

22 tP(I) in W(NN1)-Y(':1(I)

j C CALCLJLATE L2

E'0 540 1I iNLJP
540 E2(I) n-YC1(I) -- YC2(I)

['0 560 1 BMNUP
560 EB(III) E2<I)

2 20. C(JNTINLJE

Cg CALCULATE 'THE STEADY STATE SAMPLE COYARIANCE OF ERRORS

')1MEANA 0. 0
SMEANB -0.0

[.05611- SMA 8 :+EA(I)

-fi NEI SMEAND + EB(I)InETA14A -SMEANA/300

SMh A"S SMEAt4/300
'IA 0.0

98 0.0
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110 563 1I 501Y800
YEA VEA + (EA(I)-SMEANA)**2

563 VEB VEB + (EB(I)-SMEANB)**2
PEASS(KK2) = VEA/300
FEBSS(KK2) =VEB/300

1800 CONTINUE
WRITE(6,570) TAU

55 F0RMA'T(5X,'F'EASS( TAU
WRITE(6v571)(F*EASS(I),p.-j,

6 )
15/1 FORMAT(5XPF18.1O)

WRITE(6Y572) TAU
KiI FORMA'T(SXY'PEBSS( TAU -'YF12#8p')')

1801 CONTINUEI
STOP
ENDE
SUBROUTINE RANE'U(IXPIYPYFL)
IY = X*65539

S IY IY + 2147483647+1
6 YFL IY

YL YFL*O.4656613E-9
RETURN
E ND
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I

X2 ORDER FLANT, 1ST ORDER CONTROLLERNO# OF P'LANT STATES 2..
NO. OF PLANT INPUTS 1

NO, OF EXTERNAL INPUT I
NO. OF PLANT OUTPUTS 1
NO. OF CONTROLLER STATES ( EACH CONTROLLER)

PLANT STATE MATRIX --- AP

.0 1.0

.0 -10.0

PLANT CONTROL INPUT MATRIX -- BP
.0
200.0

jPLANT OUTPUT MATRIX -- CF'
1.0 .0

CONTROLLER STATE MATRIX --- FC
.523810

CONrROLLER CONTROL INPUT MATRIX -- 6C
-. 18162

CONTROLLER OUTPUT MATRIX (STATES) -- HC
1.0

CONTRouLLR OUTPUT MATRIX (INPUTS) -- EC
1.381

NT 51
1 1 = SAMPLE PERIOD = 0.0125 SECDELTA -:: T/(Nr-i) INCREMENT USED IN THE NUMERICAL..

INTEGRATIONS TO COMPUTE FSITAUPSITF'SIT2,
F'SI TAIJ1 USING TRAPEZOIDAL RUL.E.

W IS iHE EXIERNAL. INPUT (WHITE GAUSSIAN NOISE WITH
MEAN :r: 0.0p AND VARIANCE = 1.0

THE ISTF.ADY STATE SAMPL.E VARIANCE OF ERRORS
PEASS

0.0

0.0002195683
0 # 0008547062
0,0018880414
0.0033245913
0.0051899776

0.0051899776

0 • 0033477221
0,0019137899
0 .0008709673
0.0002244494II 0.0
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APPENDIX C

DESIGN OF THE STATE OBSERVER

In section III, yp(tk) the input to channel 1, go through the

blocks named 1st DIGITAL CONTROLLER AND OBSERVER. The output of

the first block serves as the input to the plant and the output of the

second is the estimate of the state variables of the plant and is used

to estimate yc2(tk + T*). This appendix describes how to estimate the

state variables xp(tk) from yp(tk). j

1. DESIGN OF STATE OBSERVER

Reference 3 defines an observer as the subsystem that estimates

the state variables of a dynamical system, based on measurements of

the input Up(t) and the output yp(t). Figure 22 shows the block

diagram of an observer which is formulated as a feedback control with

Gc as the feedback matrix. The design objective is to select the

feedback matrix Ge such that yp(t), the estimate of yp(t), will approach

yp(t) as fast as possible. When yp(t) equals yp(t), the dynamics

of the state observer are described by

;(t) = Apx;(t) + Bpup(t) C-I

which is identical to the state equation of the system (plant) to

be observed. In general, with up(t) and yp(t) as inputs to the

observer, the dynamics of the observer are represented by

(t) A - GeCplx(t) + Bpup(t) + GeYp(t) C-2
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FIGURE 22 BLOCK DIAGRAM OF AN OBSERVER
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Since yp(t) equals Cpxp(t), the equation C-2 is written as .1

Xp(t) = ApX;(t) + Bpup(t) + GeCp[xp(t) - x*(t)] C-3 i

The significance of this expression is that if the initial values

of xp(t) and x*(t) are identical, the equation reverts to that of

equation C-l, and the response of the observer will be identical to 1
that of the original system. [In the model in Section III, the initial

value of x*(tk) is unknown. Therefore, the .design of the feedback

matrix Ge for the observer is significant only if the initial conditions

of Xp(t) and x*(t) are different.

If we subtract equations (C-3) from (C-I), we have

[Xp(t) - x*(t)] = (A - Ge1]X - x*(t)] C-4

p p pA GeCp [p~t p()

which may be regarded as the homogeneous state equation of a linear

system with the coefficient matrix [A - GeCp]. The characteristic

equation of [A - GeCpI and of the state observer is then

IA - (A - GeCp)I = 0 C-5

Since we are interested in driving x*(t) as close to xp(t) as possible,

the objective of the observer design may be stated as to select the

elements of Ge so that the natural response of equation C-4 decays to I
zero as quickly as possible. In other words, the eigenvalues of

[A - GeCp] should be selected so that Xp(t) approaches xp(t) rapidly.

However, it must be kept in mind that the approach of assigning the

eigenvalues of [A - Ge C p may not always be satisfactory for the

purpose of matching all the observed states to the real state, since
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the elgenvalues control only the denominator or polynomial of the

transfer relation, while the numerator polynomial is not controlled.

More details and an example of the statement above are available in

SI Reference 4.

2. EXAMPLE

The following example, which is the example used in Section II

and III, is used to illustrate the technique described above.

From the example in Section II, we have

Ap =10 -11 C-6

0 -0

B C-7

B = 120001i

and Cp =1 OJ C-8

Let the feedback matrix be designated as

IGe gel C-9

I f ge2
[ Substitution of equations (C-6), (C-8), and (C-9) into (C-5), gives

()I .(A, e )J -1Il oiGop

0 9 -c2 01i -1 C-10

181
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Then the characteristic equation of the state observer is

2 + (10 + gel), + (lOgel + ge2) = 0 C-l

Let the eigenvalues of XI - (Ap - GeCp) be x = -15, -15 then 1
the characteristic equation should be

A2 + 30X + 225 = 0 C-12 1'
Equating like terms of equations (C-11) and (C-12) gives

gel =20

ge=25

Figure 23 illustrates the responses xpl(t) and xpl(t) for the

following initial 
states

Shown in the same figure is the response of x;](t) when the state

observer is designed for eigenvalues at X = -20, -20; in this case

gel = 30 and ge2 = 100. However, it is seen from the figure that

x;1 for both gel = 20, ge2 = 25 and gel = 30, ge2 = 100 are approxi-

mately the same deviation from Xp.

Figure 24 Illustrates the response xp2 (t) and x*2 (t) for the 1
two cases of observer design. The characteristics of x2 for both

gel  .0, g62 - 25 and gel a 30, ge2 = 100 are the same as that of

both xpl which are approximately the same deviation from xp2.

As mentioned earlier, the eigenvalues may not always be satis-

82

, is - -



-4E

II1

44J0

C4)

In
to 0

0 14

r-

OD N

1 83

=7



4JT4

cn~

aJn

r0

bD I

z4 1

41

C I4



I factory for the purpose of matching all the observed states to the

l real states. Reference 4 shows that the selecting larger values for

gel and ge2 to give faster transient response for the observer is

not always best. Sometimes, the large values of gel and ge2 will

only give faster transient response for one of the observed states

but not the other and the details are in Reference 4.

Since both x41 and x*2 converge to xpl and Xp2 respectively at

the same rate for A = -20, -20 and x = -15, -15, then we can select

either set of eigenvalues for this example.

d

i
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APPENDIX 0

SOFTWARE FOR THE NEW MODEL

I. FLOWCHART AND DESCRIPTION OF MAJOR COMPONENTS AND SUBROUTINE

The main program in the software for the new model is called

PROGRAM SKEWI. Its major computational tasks are to develop the state

variable model of the complete closed-loop system and to compute the

steady-state covariance of the states, the controller outputs and the

errors eA and eB. This program is almost the same as PROGRAM SKEW,

described in Appendix A, except that the inherent errors are computed

from the output of channel 2, Yc2(tk + T), and its estimated value

from the input of channel 1, y*2(tk + T*). All the variables from

Appendix A plus the variables for calculating the estimated value of

the output of the output of channel 2 are used in this proqram.

A flowchart for this program appears in Figure 25. The first

block shows the data input. The variables are self-explanatory and

discussed in Appendix A except for a new variable NTAUI, which represents

the value of T as

T = .Ai T D-l

and

NTAU1I = ITAUl * NT = I D-2

for ITAUI = 0, 1, 2, . . . , NT2

where NT must be an integer.

In block two, gaussian noise is computed by using subroutine RANDU.
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3 Read in heading and description of the plant and

Compute the Gaussian white noise by using
SUBROUTINE RANDU

j Calculate O(T.), -0(-r*), and O(T) by using eq.2-4

Calculate 'Y- ,T(r) (T), and TI1(T) by using

Ittrapezoidal rule for numerical integration

~Calculate Xp(tK), X*(tK+ *), y*(tK+T*), X* (tK+l+T*),

and y c2 (tK+ *) by using eqs. 3-13, 3-15, 3-16, 3-7,

1and 3-8

Cacuat xc2(tK+1+'T), Yc2(te+) by using eqs. 3-9,

Calculate x c1(tK+1), Ycl(tK ) by using eqs. 3-5, and 3-61

ICalculate e A, eB P ess, and eBss by using eqs. 3-17,

1 13-18, 3-19, and 3-20

FIGURE 25 FLOWCHART DESCRIBING THE MAJOR COMPUTATIONSPt OF PROGRAM SKEWi
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The third block specifies the calculation of *(T.j), *(.4j),
and *(T).

The fourth block specifies the calculation Of *(ir), *i(rI)

and *(T) by using the same technique in Appendix A.

In block five, x*(tk). x*(tk + T) x~c2(tk+l + T*), and

Yc2(tk + r*) are calculated from equations

x *(tk) = *(tk, tk-I.)xp(tk-l) + *p(tk, tk-l)Up(tk.l)

+ 01(tk, tk..l)yp(tkl1)

X(k+ T)= *(tk + T*, tk.l )x*(tk-1) + *p(tk + * t kl)UP(tk-1)

+ 41l(tk + T* tk..l)yp(tk,.1)

Xc2(tk+l + T*) = FcX*2(tk + T*) + Gcy*(tk + T*

Y(tk + T) Hc~2t + T)+ Ec-y*(tk + T*)

In block six, xc2(tk+l + T) and y c2(tk + Tr) are calculated

from equations

Xc2(tk+l + T) = Fcxc2(tk + T) + Gcyp(tk + T

Yc2(tk + T) = Hcxc2(tk + T) + EcY p(t k + T

In block seven, xcl(tk+l) and Ycl(tk) are calculated from

equations

xcl(tk+l) 2 Fcxcl(tk) + GCyp(tk)

ycl(tk) = Hcxcl(tk) + Ecyp( tk)
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In block eight, the inherent errors, eA, eB , and the steady-

3 state covariance of errors: PEASS, PEBSS, are computed from equations

! eA(t) = Ycl(tk) - Yc2(tk + T)

t k + T < t k+ , 0 < T < T, k = O, 1,..

eB(t) = Ycl(tk+l) - Yc2(tk + T)

tk+l <t < tk+l + T, 0 < T < T, k = 0, 1, . .

PEASS = 1 [eAi - A] [eAi - AIT

N i=201I. NT

PEBSS = 1 [ei - B] [eBi - T

N =201

Since the majority of this program is the same as the program in

Appendix A, then only new arrays will be shown in the following

XPI (NP) XC3 (NC)

YP1 (NOP) XPTAU1 (UP)

YC3 (NUP) PSIT2 (NP, NUP)

2. EXAMPLE

1- The computer listing for PROGRAM SKEWI, of the new model, written

[in FORTRAN, appears in Appendix E. For each value of Ti, PEASS and

PEBSS for each value of Ti are shown at the end of the listing. To

compute PEASS and PEBSS of the new model, the system has been waiting

until the state observer X* is equal or close to Xp and the system is

I in steady-state transition.

. From Appendix C, the state observer x* equals Xp at approximately

3 9
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30T (g~ el 20, ge = 25). Thus, PEASS and PEBSS can be computed at

the same time (between 200T and 300T) as PEASS and PEBSS of the basic

model in Appendix A are computed.
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APPENDIX E

COMPUTER PROGRAM LISTINGI FOR
PROGRAM SKEWI AND EXAMPLE

OF OUTPUT WRITTEN IN FORTRAN
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CCCC(. PROVIDE MAXIMA FOR CALLED ARRAYS
NPM =2
NUPM = 2
NWPM =2
NOPII = 1
NCM =2
NHM = NPM + NUPM
NFM =NPM + 2*NCM
NRRM =2*NPM +4

c
c:, READ INPUT DATA

WRITE(6,399)
899 FORMAT('l')

100 READ(5Y900) ID
900 FORMA'T (20A4)

WRIrE(6v9O2) ID:
902 FURMAT(''v20A4)

READ'( 5,906 )NP, NUP ,NWPYN OPYpNC
906 FORMAT(513)

WRITE(6P908) NPYNUPPNWPYNOP'NC
908 FORMAT('ONOo OF PLANT STATES = 'P13/

I ' NO* OF PLANT INPUTS ='P3
2 'NO. OF DISTURBANCE INPUTS ='t 13/
4 ' NO. OF PLANT OUTPUTS = ,13/

5 'NO. OF CONTROLLER STATES (EACH CONTROLLER) ='PI3)

WRITE(6P910)
910 FORMAT('OPLANT STATE MATRIX -- AP')
110 DO 112 I = 1FNF

READ(5,'914) (AP(IvJ)vJ=1,NP)
112 WRITE(6P913) (AP(IvJ)vJ=1vNP)
913 FORMAT(' 'PB613.6)
914 FORMAT(6F12.7)
915 FORMAT(8613.6)

WRITE(6v?16) *
916 FORMATr('OPLANT CONTROL INPUT MATRIX BlP')
120 DO 122 1 = 1,NP

READ(5r914) (B1P( I J) ,J1 pUP)
122 WRITE(6v913)(BlP(Iv.J)vJ=1vNUP)

bRITE(6P918)
918 FORMAT('OOBSERVER MATRIX-- GE')

130 DO 132 I=1,NP1
READ(5p 914) (GE( I J) ,J1 ,NWP)

132 WRITE(6913)(GE(IvJ)pJ=lNWP)
WRITE(6p92O)I

920 FORMAT('OPLANT OUTPUT MATRIX -- CP')
140 DO 142 I=1vNOP

READ(5p914) (CP( I J) ,J1 vNP)
142 WRITE(6p913)(CP(IvJ)pJ=lvNP)

WRITE(6v922)
922 FORMATC'OCONTROLLER STATE MATRIX -- FC')

150 DO 152 1 =1pNC

921



152 WRlTE(6F913)(FC(IvJ)vJ-1rNC)
WRITE(67924)

924 FORMAT('OCONTROLLER CONTROL INPUT MATRIX -- GC '

160) DO 162 I::.,NC
READ(5v9l4) (GC( I J) vJ1 ,NOP)

16'2 WRITE(6.,913)(GC(IJ)YJ1,7NOP)U WRITE(6v925)
925 FORMAT('0CONTROLLER OUTPUT MATRIX (STATES) -- HC')
170 DIO 172 L1vNUPI ~READ(5r9l4) (HC( I J) ,J=1 vNC)
172 WRITE(6f9l3)(HC(IY'J)vJ1lqNC)

WRITE (6p926)
926 FORMAT('OCONTROLLER OUTPUT MATRIX (INPUTS) -- EC')

180 DO 182 I:=,NUP
READ(5p9i4) (EC( I J) ,J~1 rOP)

182 WRITE(6y9l3)(EC(IrJ)i'J1,NOP)I READt(5,28) TvNT
928 FORMAT(F10.4y15)

XNT =NT
DELTA :m/T(XNT-1)
WRITE(6'930) TYNT

930 FORMAT('IT = 'vF10.4/
1I NT P5
3 'T SAMPLE RATE#'/
6 'DELTA =T/(NT-1) = INCREMENT USED IN THE NUMERICAL'/
7 1 INTEGRATIONS TO COMPUTE PSITAUPPSIT ,PSIT2'/
9 'PSITAUl USING TRAPEZOIDAL RULE.'!!)
WRITE (6, 931)

931 FORMAT(2XY' W IS THE EXTERNAL INPUT (WHITE GAUSSIAN NOISE WiTH

1MEAN =0*0w AND VARIANCE =1.0')

13 GENERATE WHITE' GAUSSIAN NOISE WITH MEAN =0 AND VARIANCE I

IX m 11111

DO 192 I " l1200

DO 193 J -1l,12
CALL RANDU(IXYIYPY)

IX = y
193 A =A+Y
192 W(I) =A-6I DO 119? 1 = 1YNUP

DO 1199 J = vNP
ECCF*(IPJ) =0.0
DO 1199 K = 1NOP

1199 ECCP(IoJ) =ECCP(IPJ) + EC(IPK)*CP(KvJ)
802 FORMAT(5Xr5613*6)
835 FORMAT(5XP5G13#6)
C
C
C CALCULATE PHIT(O)PPHIT(DELTA)VPHIT(2*DELTA),...PPHJT(Tr)
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C

DELHLF = DELTA/2.0
TI =0.0
DO 402 11 = 1,NP
DO 402 JJ = ,NP
IF(II.EQ.JJ) 00 TO 403
PHIT1(IJJY1) =0.0
GO TO 402

403 PHZT1(IIPJJP1) = 1.0
402 CONTINUE

DO0 4 Il = 2YNT
TI = TI+DELTA
PHIT1(lv1,11) I#
F'HITl(1r2,Il) (1./10.)*(i#-EXP(-10.,*TI) )
PHITI(2plpIi) 0.0

4 PHITI(2p2pl1) EXP(-10.ITl)
£D0 400 11I 1,NP
DO 400 JJ =1YNP

400 PHIT(IIPJJ) = PHITI(IIPJJYNT)
Ni = 0
DO 1801 KK91 = 1,6
NTAUI (KK1-I)NC10
NTAU1 =NTAU1 + 1
TAUU = N1*0.0125/5.
Ni= Nl +1I
DO 1800 KK92 = 1,6
NTAU = (KK2-1)*10
NTAU = NTAU + 1

C INITIAL VALUE YC2(-TIME+TAU)r YC3(-TIME)p YC1(-TIME)
DO 31 1 = 1,NUP
YC2(I) =0.0
YC3(I) =0.0

31 YC1(I) =0.0
DO 32 I =1,NUP

32 ElCl) = YC3(1) - YC2(I)
C FROM INITIAL VALUE XP(TIME)v AND YP(TIME) ARE EQUAL TO ZERO i

DO 35 I1 1,NP
XP1(I) 2.0

35 XP(I) 000*
DO 435 1 = 1PNOP
a = 000
DO 436 J = ivNP

436 a0 0 + CP(IpJ)*XP1(J)
435 YPi(I) =0

DO 36 1 1PNOP
36 YP(I) = 0.0 i
C FROM INITIAL VALUE XC1(TIME+T)o YCI(TIME) ARE EQUAL TO ZERO

DO 37 1 1PNC
XCi(I) =0.0

XC3(I) 0.0
37 XC2(I) 0.0

DO 52 1 IvNUP
52 'cicr) 000



[C
C CALCULATE PHIT(TAU)

IDEL =:0
DO 5000 1 = ,NT
ILEEL. : IDEL + 1
IF(N4TAU. EI -NTAUi.*AND* IDEL.. EQ NTAU) GO TO 7
IF(IDEL.EUbN'TAU) GO TO 16
TF(I'ELE0,NTrAui) GO TO 22
(3o rFO 5000
DOC S I I I v NP

I--c a~ 8j J I p 1NP
PHTAU(IlvJJ) FPHIT 1 (IIP,JspIDEL)
f PHTrAtU(IIYJJ) FHI*Tl(IIYJJYIEEL)
GO TO 5000

16 DO0 17 11IY1NP
D~O 17 JJ I rNP

I :.' PHrAU(I:[ 7 JJ) :- HIT11(IIPJJrIriEL)
L GO TO 5000

22 DO 2:3 11l 1NF'
DO 23 JJ lriNPI23 F*HTAU1(IIYJJ) !::PHITI(IIYJJPIDaEL)

.5000 CONTINUE

c; CALCULATE PSIT(TAU)PPSIT(T)

D ~O 550 1 IPN
['0 550 J lPNWPIP.L(IPJ) 0.

50 PS(IPJ' 0.0
110 551 11 ,NP
DEO 551 J IYNWF'
PSITr2(IYJ) 0.0F PSTAU(IYJ) =0.0

PSI(I.J) 0.0[ LEO 551 K = IYNP
PSIT2(IJ) =PSIT2(IJ) + PHIT1i(IPI PNT)*GE(t(gJ)
PSTAU(IPJ) "~ PSTAU(IPJ) + PHITI(IPKFNTAU)*BIP(KPJ)E PSTAU1(IFJ) =PSTAU1(IrJ) + PHIT1(IPKPNTAU1)*BlP(KPJ)

551 PSIT(IPJ) PSIT(Ii'J) + PHITI(IPKPNT)*B1P(KPJ)
LEO 552 1IT1NP
DO 552 .J 1NWP
PSIT2(IPJ) = DELHLF*PSIT2(IPJ)
PSTALJ(IPJ) = DELHLF*PSTAU(IPJ)
PSTAUM(1J) = DELHLF*PSTAU1(IPJ)I552 PSI1(IPJ) DELHLF*PSIT(IPJ)

60 DO 61 Il 2,)NT
12 -NT-I1+1IDO 62 1 1PNP
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DO 62 J =liNW.P
PSIT2(IYJ) PSIT2(IJ) + Pl(IrJ)

62 PS IT( I J) =PsiTr(iJ) + Ps(irJ)
110 63 1IY1NP
DO 63 J lrNWP
P1(IPJ) 0.0d
PS(IJ) 0.0
DO1 63 K ivNP
PI(IFJ) FP1(IFJ) + PHITl(I,I,2)*GE(KvJ)

63 PS(IPJ) F'S(lsJ) + PHIT1(IKrI2)*Bl'P(KJ)
110 64 1 IYNP
DO0 64 J 19.iNWP
PI(IYJ) LELHLF*Pl(IYJ)

64 PS (I vJ) LDEL.H-F*FS( I vJ)

[10 66 J lY1NWP

PSIT2UJ) FPI(l.J) + FSI*12(IJ)66 PSIT(I,J) PS(IP,J) + PSIT(IvJy
61 CONTINUE

DO 8 0 1IY1NP

DO 80 J lNWP

IF(NrAuII,EQ.) GO TO 85
(3O To 90

85 DO 86 11 IYNF'
DO 86 jj IVNWPP,6 ,srAtL1(l:r t jj) =: 04
01) TO 67'

90 DO ?1 Ii 2YNrAUl
12 = NTALJI-11+1
110 92 1 1 rNP
110 92 J I rNWF'

Q, FSTAU1(1,J) :=PSTAUI(I,,J) + PS(IPJ)
DO 93 .1 -* iNP
[10 93 J I vNWP
Ps Q .J) 0.0
110 93 K ls.NP

9:3 P'S(LJ) PS(Iv,J) + PH171(IvKI2)*BlP(KJ)
DO1 94 1IY1,1
DO 94 J lyvNWP

94 PS(IPJ)=iIEtHLF*PS(IJ)
00 9 6 1 1 vNP'
DO 96 J 1.NbIP

96 PSTAUI(1,J) =PS(IPJ) + PSTAU1(1,J)
93. CONTINUE
6',; DO 68 1 1 iNP

DO 68 .. lvNWP
68 FS(IPJ) 0.0 *

IF(NTAUEQ,1) GO TO 55
6O TO 69 1N

5b 00 58 11= l
Do 58 JJ = 1vNWP

bo PSTAU(IIJJ) 0.0
00 TO 77
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69 J.10 70 11 !: 2,NTAU
12 =NTAU--I1+1
DO 71 1IPN
110 7 1 J I NWP

71 PSTAU(IvJ) PSTAU(IPJ) + PS(I,J)
[10 72 1 1 NP
11O 72 J 1rNWP
PS(I,j) 0.0
D:O 72 K 1,NP

72 PS(IY.J) PS(IYJ) + PHITI(IFKP12)*B1P(KPJ)
DO 73 1IP1NP
DO Z3 J lvNWP

'3 P S( 17J ) DEL-HLF*PS (19,J)I-DO 76 1 lvNP
DO 76 .J lvNWP

76 FPSTAU(IPJ) =PS(IPJ) + PSTAU(IrJ)
.10 CONTINUE

77 CONTINUE
C

c START TIME LOOP'
C TIME = 0
C
C

NNI : 1
DO 412 1 1,: INOP

412 UP(I)= (N)Y1I
110 413 1 = 1,NP
0 = 0.0
DO 414 J = 1YNP[414 0 =0 +.FPHTAU1(IPJ)*XP1(J)

413~ XWI(I) 0=
DO 415 1IY1NP

0 0.0
D~O 416 J IPNUP

416 0(= 0 + PS*TAU1(IPJ)*UP(J)
45 XW2(I) =0

DO 417 1IPN
4 1 XPrAU1(I) = XWi(I) + XW2(I)

DO 418 I = 1NOP

DO0 419 J =1lNP
419 Q = 0 + CP(IPJ)*XPTAU1(J)
418 YPTAU1(I) =0

DO 420 1I 1NUP
a0=0.0
DO 421 J =1PNC

421 0 =0 + HC(IvJ)*XC3(J)
420 XU1(l) =0

DO 422 rI-- 1,NupI. 0 = 0.0
DO 423 J =1PNOP

42' 3 0 =0 + EC(IYJ)*YPTAU1(J)

422 XW2(l) 0
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DO0424 1 =1'NUP
424 YC3(I) = XW1(I) + XW2(I)

DO 425 1 1PNC
al 0.0
DO0 426 J 1vNC

426 Q 0 + FC(IvJ)*XC3(J)
425 XW1(I) Q:

DO0 427 1 1'NC
a = 0.0

48 DO 42.8 J 1,NOP
428 =0 0 + GC(IvJ)*YP'TAUi(J)

42/ X W2 ( I) -, 0
DO 429 1 =- XvNC

4'29 XC3(I) :.LXW1(I) + XW2(I)
D10 430 1I:=1,NUE'

430 E2 (i) --YC3(I) .-YC2(I)
110 220 I11 :1--I300I

C CALCULATE XP(TIME+TAU)i AND YP(TIME+TAU.)
C

DO 253 1 14WP
(4 0. 0

DO 254 J IMNP
... 4 (Q( + PHTAU(IPJ)*XP(J))
25+3 XWI (i) :::; a

DO 255 1IvLiP
0l 0.0
DO0 256 J INUP

25'6 0 0 + PSTAU(IPJ)*UP(J)
2 55 XW2(I) :!.0

DO 257 1 =IPNP
25 j7 XPTAU(I) =XW1(I) + XW2(I)

DO 260 1 =I rNOP
0 = 0.0
DO 261. J :lIMrP

261 0 = (4 + CP(IYJ)*XP'TAU(J)
260 YPTAL(I) !r Q
C
(2 TIME :=TIME + T
C CALCULATE XC2(TIflE+T+TAU) 'AND YC2(TIME+TAU)

DO 300 1 = IPNUP
a(= 0.0
DO 301 J = XvNC

301 0 =0 + HC(IvJ)*XC2(J)
300 XW1(I) = a

DO 302 1 = ZNUP
a = 0.0
DO 303 J =IPNOP

303 0 =0 + EC(IPJ)*YPTAU(J)

302 XW2(I) r:0
DO 304 1I IPNUP

304 YC2(I) = XW1(I) + XW2(I)

DO 305 1 = 1YNC

go



0 0.0

DO) 306 J -Is'NC

j306 0 0+F(Y)X2J
DO0 307 1IP1NC
a 0.0
DO 308 J 1,NOP

308 0 Q + GC(IY.J)*YPTAU(J)
307 XW2(I) =; 0

DO 309 I = 1uNC
309 Xt2(I) = XWl(I) + XW2(I)
C
C CALCULATE El
C

DO 290 I := lvNUP
290 El(I) :=YC3(I) -- YC2(I)

- C

C ESTIMATE XP*(TIME)Pv AND' YP*(*TIME)
C;

j DO 432 1I=rlNUP
432 YP2(I) n-YP(I) - YP1(I)

DO) 405 1 1 vNPj a 0.0
DO 406 J -IPNF

406 0Q 0 + PIHIT(IvJ)*XP1(J)
405 XWi(I) =0IDO 40? J lUNP

a0 0.0
DO 408 J r1NUP

408 0 = 0 +- PSIT(IYJ)*UP(J)
407 XW2(I) = 0

DO 409 I := lPNP
O = 0.0I DO 410 J :=vlNUP

410 0 = 0 + PSIT2(IvJ)*YP2(J)
409 XW3(I) = 0

DO 411 1 = lvNP
411 XP1(I) = X~d1(I) + Xbi2(I) + XW3(I)

1 ~ DO 434 J = 1'NP
434 0 =0 + CP(IvJ)*XP1(J)
433 YP1(I) = a
C
C CALCULATE XP(TIME)v AND YP(TIME)
C
373 DO 500 I =1vNP

0=0.0PHTIJXPJ
j51 DO +0 =lN

500 XU1(X) = 0
DO 502 I = 1vNP
a 000
DO 503 J = iNUP

..I ... .



503 Q := + PSIT(IYrJ)*UP(J)
502 XW2(I) 0

DO 504 1 = 1YNP
504 XF'(I) :=XW1(I) + XW2(I)

DO 507 1 = IPNOP
a=0.0

DO 508 J = 1PNP
508 a0 0 + CP(IJ)*XF(J)
507 YF(I) = 0

C CALCULATE XC1(2*TIME)p AND YC1(TIME)
C

DO 700 1 = 1,NUP
a 0.0
DO 701 J = INC

701 0 0 + HC(IPJ)*XCI(J>
700 XWl(I) =0

DO 702 I 1vNUP

DO 703 J 1PNOP
703 0 0 + EC(IYJ)*YP(J)
702 XW2 ( I) 0:-

D10 704 1 :I 1 UiP
704 YCI(I) mXWI(I) + Xbi2(I)

DO 705 1 1 rNWC
0 = 0.0
DO 706 J lP1NC

706 0 = 0 + FC(IYJ)*XC1(J)
705 XWl(I) 0=

DO 707 I 1,NC
a = 0.0
DO 708 J =IPNOP

708 0 = a + GC(IPJ)*YP(J)
707 XW2(I) =0

DO 709 1I JpvNC
709 XC1(I) =XWl(I) + XW2(I)
C
C ESTIMATE XP*(TIME+TAU)p AND YP*(TIME+TAU)
C

NN1 NNI + 1
DO 221 1 = 1,NOP

221 UP(I) = W(NN1)-YC1(I)
DO 520 1 = lNP
a = 0.0
DO 521 J = ivNP

521' 0 = 0 + PHTAUI(IPJ)*XP1(J)
520 XWI(I) = 0

DO 522 I m lrNF

DO 523 J m INUP

523 0 0 + PSTAU1(IPJ)*UP(J)
522 XW2(l) = 0

DO 524 I.= 1PNP

524 XPTAU1(1) XbWl(1) + XW2(l)
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DO 525 I liNOF
0 =0.0
DO 526 J IYNP

526 0 =0 + CFP(IYJ)*XFTALI1(J))
525 YPTAU1(I) -- U
C
c CALCULATE XC*(2*TIME+T!AU*)y AND YL.*(TIME+T'AU*)
C

DO 529 I 1,NUP
a = 0.0
11O 530 J I N

530 0 = 0 + HC(IYJ)*XC3(J)
-1529 XW1(I) --:0

DO 531 I 1 vNUP
o 0.0
DO 532 J I vNOF

532 0 =0 + EC(TvJ)*YPTAU1(J)
531 XW2(I) =0

DO 533 1I 1,NUP
533 YC3(I) :=- XWmI) + XW2(I)

DO 535 1 1 PNC
0 0.0
DlO 536 J IPNC

536 0 =0 + FC;(IYJ)*XC3(J)
535 XW1(I) =0

DO 537 I = 1YNC
0 =0.0
DO 538 J =17NOP

538 0 =0 + GC(IPJ)*YPTAU1(J)
DO 539 I = INC

539 XC3(I) = XW1(I) + XW2(I)
C
C CALCULATE E2

DO 540 1 = 1,NIJP
*540 E2(I) = YC3(I) - YC2(I)

DO 560 1 = 1NUF
EA(II) =EI)

560 EB(II1) E2I
220 CONTINUE

SMEANA = 0.0
SMEANB =0.0
DO 561 1 ::: 201v30
SMEANA =SMEANA + EA(I

561 SMEANB = SMEAN4 I. EB(I
SMEANA = SMEANA1100
SMEANB = SMEANB/100
VEA = 0.0
VEB = 0.0
DO 563 1I 201,300
VEA = YEA + (EA(I)-SMEANA)**2

563 VEB = VEB + (EB(I)-SMEANB)**2
PEASS(KK2) YEA/100
PE SS(K2) = VE/100 

0



1800 CONTINUE570 FORMAT(5XP'F'EASS( TAU* 'YF12.8,')')

WRITE(6p'71) (PEASS( I), I.~.i6)
571 FORMAT(5XPF18.10,)

WRITE(6v572) TAUI
572 FORftAT(SXYPEBSS( TAU* ='vF12.8t')')

1801 CONTINUE
STOP
END
SUBROUTINJE RANIIU( IX, IYYFL)
IY :::IX*65i53?
IF( IY)5y6v6

5 IY = Un + 2147483647+1
6 YFL IY

YFL =YFL*0.4656613E--9
RE TURN

END
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EXAMPLE-------2TH ORDER PLANT, IST ORDER CONIROLLER
NO. OF PLANT STATES = 2
NO. OF PLANT INPUTS = 1
NO. OF EXTERNAL INPUT I
NO. OF PLANT OUTPUTS = I3 NO. OF CONTROLLER STATES ( EACH CONTROLLER)

PLANT STATE MATRIX -- AP
.0 1.0
.0 -10.0

PLANT CONTROL INPUT MATRIX - BP
.o
200.0

I PLANT OUTPUT MATRIX -- CP
1.0 .0

CONTROLLER STATE MATRIX -- FC
.523810

OBSERVER MATRIX -- GE

20.0
25.0

CONTROLLER CONTROL INPUT MATRIX -- GC
-. 18162

j CONTROLLER OUTPUT MATRIX (STATES) -- HC
1.0

CONTROLLER OUTPUT MATRIX (INPUTS) -- EC
1.381

NT 51
T = SAMPLE PERIOD 0.0125 SEC
DELTA = T/(NT-1) = INCREMENT USED IN THE NUMERICAL

INTEGRATIONS TO COMPUTE PSITAUPSIJFST2,

PSITAUl USING TRAPEZOIDAL RULE.
W IS THE EXTERNAL INPUT (WHITE GAUSSIAN NOISE WITH

MEAN = 0.0, AND VARIANCE = 1.0
THE STEADY STATE SAMPLE VARIANCE OF ERRORS

PEASS( TAU* = 0.0 )
0.0
0.0002195683
0.0008547062
0.0018880414

0.0033245913
0.0051899776

PEBSS( TAU* = 0.0 )
0.0051899776
0.0033477221
0.0019137899
0.0008709673
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0.0002244494
0.0

PEASS( TAU* = 0.0025 )
0.0002195683
0.0
0.0002097336
0.0008310268
0.0018685847
0#0033477221

PEBSS( TAU* = 0.0025 )
000074686036

0.0052524656
0.0034256792
0.0019714807
0.0008955190
0*0002240368

PEASS( TAU* = 0.005 )
0.0008547062
0*0002097336
0.0
0#0002076342
0.0008371675
0.0019137899

PEBSS( TAU* = 0.005
0.0100931898
0.0075152330
0*0053092465
000034589050
0.0019702637
0.0008699684

FEASS( TAU* = 0.0075 )
0.0018880414
0,0008310268
0.0002076342

0.0002127137

0.0008709673
PEBSS( TAU* = 0.0075 )

0.0130441934
0.0101163760
0.0075445175 1
0.0053128712
0.0034278994
0.0019165913

PEASS( TAU* = 0.01 )
0 * 0033245913
0,0018685847 i0,0008371675

0,0002127137
000
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0*0002244494
PEBSS( TAU* = 0.01 )

0.0163251571
0.0130585469
0.0101340003
0.0075355470
0.0052701645
0.0033652126

IPEASS( TAU* = 0.0125 )
0*0051899776
S0. 0033477221
0.0019137899
0°0008709673
0.0002244494
0.0

FPEBSS( TAU* = 0.0125 )
0.0199597441
0.0163656212
0.0131007358

0.0101497732
0*0075195357
0,0052378476

1
!

!
!
I
I
I
I
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APPENDIX F

COMPUTER PROGRAM LISTING
FOR

ALGORITHM FOR ESTIMATING r
AND EXAMPLE OF OUTPUT WRITTEN

IN FORTRAN

1

i

Hi
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DIMENSION AP(2v2),BlP(2v2),GE(2v2)vCF(1P2)FFC(22)9GC(I)p
1 HC(2,2)PEC(2v1),P'HITJ.(4,4pOl)pPSI*T1(4,4)rPHTAU(4,4),YP2(2),
2 PHIT(4s4) ,FSTAIJ(4r4) ,PSIT(4v4)v
4 INDEX(4).PW(4000),PS(4p4)PPHTAUI(4,4) ,PSTAU1I(4,4),'(CI(2. ),
~5 YC2(2) PEI (2) rEw 2(2) YXP(2) rXPTAtJ(2) 9tXPl (2) rYP(2) vYPTAUL'.)
6 YP1(2) PXC1(2) YXC2(2)PAM (4p4) PPT(4v4) vF'l (4r4) rDi(4,4)I7 E2(44)jPD3(4)v-XWI(2)t-XW2(2),ECCP(2tv2) ,EI(4,4) YFTAUl(2, )v
8 PEASS(50) ,PEBSS(50) ,EA(300) ,EB(300) ,YC3(2) sXC3(2) ,UP(2)y
9 XWa3(2)yXPTAU1(2)

Cl*2"CC PROVIDE MAXIMA FOR CALLED ARRAYS
NPM =22

L NOPM I
NCM =2
NHII NFM + NUFM
NFM NPM +f 2*NCM
NRRM 2*NPM +4

CI C
C READ INPUT DATA
C

C WRITE(6P899)

899 FORMAT("1')
100( READ(5,900) ID
900 FORMAT(20A4)

WRITE(6P902 I)7D
902 FORMAT( '1', 'oA4)

READ(5y906)NPYNUPPNWPPNOFPNC
906 FORMAT(513)

WRITE(6P908) NF ,NUF'NWPyNOFPNC
908 FORMAT('ONO. OF PLANT STATES 1.3/I I ' NO. OF PLANT INPUTS = 'P13/

2 ' NO, OF DISTURBANCE INPUTS = 'P 13/
4 ' NO. OF PLANT OUTPUTS = y 131
5 ' NO, OF CONTROLLER STATES (EACH CONTROLLER) '!#13",

?10 FOMT'PLN TT MATRIX -- AP')

READ(5,914) A(P)P=PP
12 WRITE(6P913) (AP(IrJ)YJ=IPNP)
93 FORMAT(' 'P8G13*6)I914 FORMAT(6Fl2.7)

915 FORMAT(8613.6)
WRITE(6P916)I916 FORMAT('OPLANT CONTROL INPUT MATRIX -- BIP')

120 DO 122 I = irNP
READ(5,9l4) (BlP( I J) ,J=INUP)

122 WRITE(6P9l3)(91P(IPJ)PJ=IvNUP)I IRITE(6v9l8)
918 FORMAW(OOBSERVER MATRIX-- BE')

130 DO 132 l=lPNPI ~READ(5v9l4) (DEC I J) ,J=1vNWP)
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132 WRITE(6v913)(GE(IPJ)PJ~lPNWP)
bRITE(6P920)

920 FORMAT('OPLANT OUTPUT MATRIX -- CP')
140 DO 142 I=1,NOP

READ(5,P914) (CP( IPJ) ,j=1rNF)
142 WRITE(6P913)(CP(IirJ)PJ=1vNP)

WRITE(6r922)
922 FORMAT('OCONTROLLER STATE MATRIX -- FC')
150 DO 152 1 =1,NC

READ(5v914) (FCC I J) ,J=1 ,NC)
152 WRITE(6,913)(FC(IPJ)vJ=1PNC)

WRITE(6t924)
924 FORMAT('OCONTROLLER CONTROL INPUT MATRIX GC ')
160 DO 162 I=1PNC

READ(5r914)( CCI J) vJ=1 NOP)
162 WRITE(6v913)(GC(IPJ)yJ=1rNOP)j

WRITE(6y925)
925 FORMAT('OCONTROLLER OUTPUT MATRIX (STATES) -- HC')
170 DO 172 X=1rNUP

READ(Ss'9l4) (HC(IJ) ,J1 ,NC)
172 WRITE(6r913)(HC(IPJ)vJ=1PNC)

WRITE(6,926)
926 FORMAT('OCONTROLLER OUTPUT MATRIX (INPUTS) -- EC')
180 DO 182 I=1yNUP

READ(5v914) (EC(IPJ),J=1PNOF)
182 WRITE(6v913)(EC(IvJ)qJ=1qNOP)1

READ(5P928) TvNT
928 FORMAT(F1O.4P15)

XNT = NT
DELTA = T/(XNT-1)
WRITE(6y930) TYNT

930 FORMAT('1T = 'PF10.4/
1 /NT ='PIS/

3 'T =SAMPLE RATE*'/
4 'NT-i NB. OF EVENLY-SPACED SUDINTERVALS INTO WHICH T IS,/
5 'DIVIDED#'/

6 /DELTA =T/(NT-1) = INCREMENT USED IN THE NUMERICALJ/
7' INTEGRATIONS TO COMPUTE VZTP 4ZTAUY AND'/
9 A VZTAU1 USING THE TRAPEZOIDAL RULE.'//)
WRITE(6v931)

931 FORMAT(2Xv' W IS THE DISTURBANCE VECTOR (WHITE GAUSSIAN NOISE'/
1 /WITH MEAN = 0 AND VARIANCE =1)')

C

C GENERATE WHITE GAUSSIAN NOISE WITH MEAN 0 ANiD VARIANCE I

C '
IX a 11111
DO 192 1 a 1P1200
A = 0.0 I
DO 193 J a 1,12
CALL RAMOU(IXPIYvY)

II



192 W(I) ;A-6 iN

DO 1199 J 1N
ECCP(IpJ) 0.0
D'O 1199 K< = INOP

1199 ECCP(IJ) =ECCP(IrJ) + EC.,(IYK)*CP(KrJ)
802 FORMAT(5XvSG1J.6)
835 FORMAT(5XPSG13.6)

CS CC CALCULATE PHIT(T)y PSIT(TAJ),
c ~PHIr(0)v PHIT(L'ELTh)v PHI Tt2DELTA) Y...,PHI"'' TL'LJA)

C PSIT(0)v PSIT(DELTA)v PSIT(DELTAl..PpSI(T--DEL-TA)
C

TI = 0.0
DELHLF :LDELTA/2.0
DO 402 It = 1'NP
DO 402 JJ =ivNP
IF(II.E0,JJ) GO TO 403I PHIT1(IIJJv1) =0.0
GO TO 402

403 PHITI(IIp,J),)v1) =1.0Ii402 COJNTINLJE
DO 4 11 :: 2,tNT
Tri = ri+[DELTA

PHI*T1(1,2r11) =(1./i0.)*(l.-EXP(--10.*TI))

PHIT1(2,1,I1) 0.0

DO 400 JJ =XtNP
400 FHIT(IIiJ.J) PHIT1(IIY,JNT)

NTALJ2 = 0I N7 2000
148 300
N9? 50
ICOUNT r0

ICUNTI I
N4 =0

NTAU =4
r 1N3 = (N4+NS)/2

600 NTAU1J N 13
MCOUNT ICOUNT + 1
CALL COVAR(AP,81PCPFCGCHCECPGEECCPWPHITPNIT,NTAUNTAI.11

1 EAPPEASSPNPMPNUPMPNOPMNCMNHNNWPMN7,N8, ICOUNTvNYDELHILF)

655E6t55 N5AAl;NTAU2

NERROR = IASCNTAUI-NTAU2).11 IF(NERROR.EO.1) GO TO 605
IFICUNT1.NE.1) GO TO 601
N43 = N3 + 1g NTAU3 N 13
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NTAU1 = NTAU3
ICUNT2 =ICOUNT
ICUNTI = 0
GO TO 600

601 IF(PEASS(ICUNI'2).LT.PEASS(ICOUNT)) GO TO 602
N4 = N3 - 1
N3 = (N4 + N5 )/2
NTAU2 NTAUI
ICUNT1 I
GO TO 600

602 N5 =N3-1I
N3 =(N4+N5)/2
NTAU2 =NTAUl

ICUNT1 1
0O TO 600

605 IF(NTAU1.EG.1) GO TO 606
IF(NTAU1*LT.NTAU2) GO TO 608
ICUNT2 = ICOUNT -1
IF(PEASS(ICUNT2).LT.PEASS(ICOUNI')) GO TO 613

616 NTAU1 =NTAUI + 1
ICOUNT =ICOUNT + 1
CALL COYAR(APB1PCPFCGCHCPECPGEECCPYWPHI*PHITlNrANTA1JI

1 EAvPEASSNPMNUPMPiNOPMPtNCMPNHMPNWPMvN7,N8,ICOUNTN9I''E*LH.F')

ICUNT2 = ICOUNT - I
IF(PEASS(ICUNT2).LT.PEASS(ICOUNT)) 0O TO 615
TAUL = (NTAUI-2)*0*0125/50
GO TO 612

615 IF(NTAU1.L*T*N5) GO TO 616
TAUl = (NTAU1-1)*0.0125/50
GO TO 612

613 TAUl = (NTAUI-2)*0.0125/50
GO TO 612

606 ICUNT2 =ICOUNT - 1
IF(PEASS(ICUNT2).LT.PEASS(ICOJNT)) 6O TO 607
TAWl = (NTAU1-l)*0*0125/50
GO TO 612

607 TAWl = NTAU1*0.0125/50
GO TO 612

608 ICUNT2 = ICOUNT - 1
IF(PEASS(ICUNT2).LT.PEASS(ICOUNT)) GO TO 609
NTAUI NTAUI - 1
ICOUNT =ICOUNT + 1
CALL COVAR(APB1PCPPFCvGCPHCPECvGEECCPPWvPHITvPHXTlvNTAUNi'AUI

1 EAPPEASSvPI'tMPNUPMPNDPMvNCflvNHMNWPMPN7,N9, XCOUNTiN~iDELHLF)
XCUNT2 = ICOUNT - 1
IFCPEASS(XCUNT2).LT.PEASS(XCOUNT)) 0O TO 610 -

TAU1 a UTAU1*0#0125/5O
GO TO 612

610 TAUI a (NTAU1-1)*0.0125/50
0O TO 612 L

609 TAUl n (NTAU1-1)*O.0125/50
612 WRITE(6P650) TAUl
650 FORMAT(5Xu' THE SKEW OF THE SECOND CONTROLLER IS 'PF13.8)
657 FORMAT(5X,'THE NUMB'ER OF ITERATIONS IS ',X5)



WRITE(6p657) ICOUNT
S TOP
END'ISUBROUTINE COA(PBPC FvCHPCGPE:PWPIlFHITIV
I NTAUPNTAUIPEAvPEASSNPMPNUPMNOPMvNCMPNHMPNWPMN7,N8,ICOU.NTr)N'-
2 DELHLF)U DIMENSION ECCP(NPMvNUFM)
DIMENSION APN~NMvl(PYUMYC(OMNMYCNMNM

1 GC(NCMPNOPM)PHC(NUPMNCM),EC(NUPMNO)PM),GE(NPMNWPM)YW(N7)-
2 PHIT(NHMNHM) ,PHIT1 (NHMPNHM, 101) EA(NB) ,PEASS(N9),
3 FHTAU(4,4),PHTAU1(4,4)rFSITI(484)yprPSA((4,4),YCI(2) pYP2(2)9
5 YC2(2)vE1(2)vE2(2)%,XP(2)Y'XF"TAU(2)jXP1(2),YP(2)YTA(t2)
6 YPI(2)YXCI(2)PXC2(2)PAM(4v4) ,PS(4,4)P1(4,4),D1(4,4),
7 D2(4,4) ,D3(4) ,XbIl(2) ,XW21(2) ,D(4,4) vYPTAU1 (2) ,YC3(2) 7XC3(2)f
9 XW3(2),XPTAUI(2),PSTAU1(4,4),PSIT2(4,4),PSIT(4,4)YUP('2)

NC 1
NWP I
NUF' 1I NT =50

DO0 31 I - iNUP
YC2(I) -0.0

YC3(I) 0.0
31 YC1(I) =0.0

DO 32 1 tvNUP
32 El(l) t::YC.3(i) -- YC2(l)
C FROM INITIAL VALUE XP(TIME)y AND YP(TIME) ARE EQUAL TO ZERO

DO 35 1 1 vNP
XP1(I) 0.5L XP(I) =0.0

DO 435 1 L.NOP
0 0.0I DO 436 J ls'NP

436 a a + CP(IlJ)*XP1(J)
435 YP1(I) = 0

36DO 36 1 :rI NOF*
36 YP(I) :-; 0.0

c FROM INITIAL VALUE XCI(TIME+T), YC1(TIME) ARE EQUAL TO ZERO
DO 37 1IY1NCI XC1(I) =0.0

XC3CI) =0.0

37 XC2(I) =0.0I DO 52 1 19NUP
52 YC1CX) 0.0

IDEL = 0
DO 5000 1 = 1PNTIIDEL =IDEL + 1
XF(NTAU.EO.NTAU1.AND.IDEL.EO.NTAU) GO TO 7
XF(IDEL.EG*NTAU) GO TO 16

IF(XDEL*EG.NTAU1) GO TO 22
GO TO 5000

7 DO 8 11 1,NP30 8O JJ 1PNP



-HA(IJ)=PHT(IJFDL

a PHTAU1(1vJJ) = PHIT1(IIPJJPIDEL)

60 TO 5000
16 DO 17 11 = 1vNP

DO 17 JJ = 1,NP
17 PHTAU(IIYJJ) = F*HIT1(1IPJJPIDEL)

00 TO 5000i
22 DO 23 11 = 1YNP

DO 23 JJ = ,NP
23 PHTAU1(IIJJ) = PHIT1(IIPJJPIDEL)
5000 CONTINUE

DO 550 1 = IPNP
DO 550 J = 1,NkJP
P1(IFJ) = 0.0

550 PS(IJ) = 000
DO 551 1 = 1,NP
DO 551 J = 1vNWP
PSIT2(IPJ) = 0.0
PSTAU(IYJ) =0.0
PSTAU1(IvJ) =0.0
PSIT(IYJ) =0.0
DO 551 K = iNP
PSIT2(IYJ) =PSIT2"(IPJ) + PHIT1(IPKPNT)*GE(KYJ)
PSTAU(IrJ) = PSTAU(IPJ) + PHIT1(IYKPNTAU)*'1P(KPJ)
PSTAUM(XJ) = PSTAU1(IrJ) + PHIT1(IPK,.NTAU1)*BlP(KPJ)

551 PSIT(IPJ) =PSIT(IPJ) + PHIT1(IvKvNT)*BIP(KPJ)
DO 552 1 1PNP
DO 552 J = 1NWP
PSIT2(IPJ) = BELHLF*PSIT2(11 J)
PSTAU(IvJ) = DELHLF*PSTAU(IYJ)
PSTAU1(IPJ) = DELHLF*PSTAU1(IPrJ)

552 PSIT(IrJ) =DELHLF*PSIT(IpJ))
60 DO 61 Il 2PNT

12 = NT-Il+l
DO 62 1 = 1,NP
DO 62 J = lrNbJP
PSIT2(IJ) =PSIT2(IJ) + P1(IPJ)

62 PSIT(IPJ) FSIT(IPJ) + PS(IPJ)
DO 63 1 = lvNP
DO 63 J = 1PNWP
P1(IJ) = 0.0
PS(IJ) = 0.0
DO 63 K = 1,NP
P1(IPJ) = P1(IPJ) + PNITI(IKvI2)*GE(KPJ)

63 PS(IvJ) =PS(IJ) + PHIT1(IvKPX2)*B1PCKPJ)
DO 64 1= 1PNP -

DO 64 J = 1PNWP
P1(XJ) - DELHLF*P1CIPJ)

64 PS(IPJ) - DELHLF*P'SCIPJ)
DO 66 1 = 1uNP
DO 66 j = Np
PSIT2CXJ) P1(IvJ) + PSXT2(IJ)

66 PSITCIPJ) P9(IJ) + P9IT(XJ)
-4 61 CONTINUE f

112p



IDO 80 1 IN
DO 80 1 1,NWP380 PS(IJ) 0.0
IF(NTAUl.EQ*I) GO TO 85
GO TO 90
DO 86 11TI N
DO'L 86 JJ :--.J-NWP

8-6 PS*JAUlkll,j : 0.0
GO TO 67

90 DO 91 Il 2vNTAU1
12 = NTALI.11+1
DO 92 1IY1NP1 92 DO 92 J i,NWP

92 PSTAUI(IJ) = PSTAU1(I,J) + FS(IPJ)
DO 93 1 1, 1NP'
DO 93 J 1,NWFP
PS(1 1 J) =0.0

DO 93 K 1,NP
93 PS(IFJ) PS(IJ) + FHITl(IrKvI2)*D1P((,J)jDO 94 1IY1NP

DO 94 J 1,NWP
94 PS( I J)4'DELHLF*PS( I J)

DO 96 1 1,NP
DO 96 J IYNWPII96 PSTAU1(1,J) = FS(IrJ) + SA (IJ

67 DO 68 1 1 NP
DO 68 J IPNWFP

68 F'S(I,J) 0.0
IF(NTAU.E0*l) GO 'TO 55I (30 TO 69

55 DO 58 11 iI'
DO 58 JJ =1,NWP

58 PSTAU(II,.JJ) -- 0.0I GO TO 77
69 DO 70 11 = 2vNTAI

12 =NTAU-11+1
DO 71 1 = IYNP
DO 71 J = lNWP

71 PSTAU(I,J : PI3TAU(IJ) + PS(I,,J)IDO 72 1 = JlvNP
DO 72 J = 1,NWP
PS(IvJ) =0.0jDO 72 K = 1NF

72 PS(I,J) = PS(IvJ) + PHITI(IPKPI2)*BlP(KJ)
DO 73 1 = lrNP
DO 73 J = 1,NWPI73 PS(IJ) = DELHLF*PS(I,J)
DO 76 1 = 1PNP
DO 76 J = 1,NWP

70 CONTINUE
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C START TIME LOOP
TIME 0

C

77 NN1= 1
DO 412 I = INOP

412 UP(I) = W(NNL)-YCI(I)
DO 413 I = 1,NP
0 = 0.0
DO 414 J = 1,NP

414 0 = Q + PHTAUI(IJ)*XPI(J)
413 XWI(I) = a

DO 415 I = 1NP J
a = 0.0
DO 416 J = lNUP

416 Q = 0 + PSTAU1(I,J)*UP(J)
415 XW2(I) = 0 I

DO 417 I = 1,NP
417 XPTAU1(I) = XWI(I) + XW2(I)

DO 418 I = 1,NOP
a = 0.0
DO 419 J = 1,NP

419 O = 0 + CP(IJ)*XPTAUI(J)
418 YPTAUI(I) 0

DO 420 I = 1,NUP
= 0.0

DO 421 J 1,NC
421 a = 0 + HC(IJ)*XC3(J)
420 XW1(I) =

DO 422 I = INUP
a = 0.0
DO 423 J = 1,NOP

423 0 = 0 + EC(IJ)*YPTAUI(J)
422 XW2(I) = 0

DO 424 I = 1,NUP
424 YC3(I) = XW1(I) + XW2(I)

DO 425 1 = 1,NC
a = 0.0
DO 426 J = 1,NC

426 0 = 0 + FC(IYJ)*XC3(J)
425 XWI(I) = 0

DO 427 I = 1,NC
0 = 0.0
DO 428 J = 1,NOP

428 0 = 0 + GC(IvJ)*YPTAUl(J)
427 XW2(I) = 0

DO 429 I = INC I
429 XC3(I) = XW1(I) + XW2'I)

DO 430 I = INUP
430 E2(1) =YC3(X) - YC2(I)

DO 220 Ill = I60
DO 253 I = INP
a - 0,0
DO 254 J I 1,NP
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254 Q (I + fH'TAU(IJ)*XP(.))
253 XW1(I) :::0

DO 255 1 1PNP
a = 0.0
DO 256 J 1YNUP

256 0 =0 + PSTAU(lv,))*UF(J)
255 XW2(l) =0

DO0 257? IY1NF
2 5: XPTAU(I) XW1I) + XW2(U)3 D0 260 1I rtNUF

0 =0.0
DO 261 J 1vNF

2)61 0 =0 + CP(I,J)*XPTAU(.J)
260 YF'TAIJI) 0

DO 300 1 1 YNUP

0 =0.0
DO 301 J -1.,NC

301 Q = 0+ HC(Ip,J)*XC2(,J)

jDO 302 1 IYNUP
a = 0.0
D10 303 J 1YNQP

303 0 =: 0 + EC(IYJ)*YPTrAU(J)I302 XW2(I) =0
DO 304 1I= ,NU'

304 YC2(U) =XWI(I).+ XW2(I)
DO 305 1I?1NC
O 0.0
DO 306 J IYNC

306 Q0 0 + FC(IJ)*XC2(J)
305 XWI(1) =0

00 307 1IY1NC
a = 0.0
00 308 J I vNOP

308 0 = 0+ GC(IvJ)*YPTA(J(J)
307 XW2(I) =0

D0 309 1 !:: I vNC
309 XC2(I) =XW1(I) + XW2(I)

DO 290 1 =1vNUP

290 El(l) =YC3(I) - YC2(l)

432 YP2(1) :mYP(I) -- YP1CI)
DO 405 1 = 1YNP
a 0.0
DO 406 J = 1PNP

406 0 0 + PI'1r(IJ)*xpi(J)
405 XWI(I) =0

DO 407 .1 1PNP
Q =000
DO 408 J =1YNUP

408 0 =0 + PSIT(IPJ)*UPCJ)

40 O 409 1 INP

a£ 0 0
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[10 410 J ::1PNUP
410 LI = LI + PSIT2(IJ)*YP2(J)
409 XW3(I) =0

DO 411 1 = 1,NP
411 XPI) XWdl(I) + XWt2(I) + XW3(I)

DO 433 1 = IPNOP

aI = 0.0
DO 434 J - INP

434 aI = 0 + CP(IyJ)*XPI(J)
433 YF1(I) 0
3-173 DO 500 1 n1,NP

a = 0.0
DO 501 J = IMNP

501 LI = + PHITr(ij)*xp(j)
500 XW1I) =0

DO 502 1 1ivNP
0 = 0.0
DO 503 J IrNUP

503 aI = a + PSITr(I,,J)*UF(J)
502 XbI2(I) = LI

DO 504 1= 1,NP
504 XP(I) = XW1(I) + XW2(I)

DO 507 1 = 1YNOP
aI = 0.0
DO 508 J = IPNP

508 a = a + CP(IJ)*XP(J)
507 YP(I) = aI

DO 700 1I 1PNUP
aI = 0.0
DO 701 J = INC

701 LI = a + HC(IfJ)*XC1(J)
700 Xbwl(I) = LI

DO 702 1 = IvNUP
LI = 0.0
DO 703 J = INOP

703 LI = Q + EC(IrJ)*YP(J)
702 XW2(I) =LI

DO 704 1I= ,NUP
704 YCI) = XW1(I) + XbJ2(I)

DO 705 1I=1,NC
LI = 000
DO 706 J = 1vNC

706 LI = 0 + FC(tJ)*XC1(J)
705 XW1I) 0

DO 707 1 = 1vNC
a000
DO 708 J = IPNOP

708 0 - 0 + GC(IPJ)*YP(J)
707 XW2(I) -0

DO 709 1 = 1vNC
709 XC1(I) = XWl(I) + XWd2(X)

NtNl = NN1 + 1
DO 221 1 - IvNOP

221 UP(I) IdCNN1)-YC1I1)



DO521 J IN
521 0 =0 + PHI'ALJ1(IJ)*XP(,.)I520 XW1(I) 0-

DO 522 1IY1NP
0 000
110 523 J I PNUP

523 0 0 + PSTAtJ1(IJ)*UP(J)
522 XW2(I) = 0

IDO 524 1 1vNP
524 XPTAU1(1) XW1(I) + XW2(I)

DO 525 1 IPNOP
0 = 0.0IDO 526 J 1YNF

526 0 = 0 + CF'(IYJ)*XPTAI(J)
525 YPTAU1(I) 0

DO 529 1IY1NUP

0 = 0.0
DO0 532 J I 1,NO

532 0=0a +EC(,'J)*YPTA(J)

DO 533 1 = IYNUP

1 0 =0.0
DO 532 J = INOP

532 0 =0 + EC(IiJ)*XC3A(J)
531 XW21I) =0

DO 537 1 = iNC1~ 0= 0.0
DO 538 J = 1NOF

538 0 = 0 + FC(IrJ)*YPTAU(J)
535 XW1(I) = 0

DO 539 1 = 1YNC
53 =C(I 0#0 (I X2I

DO 540 J = 1,NIJP

540 E2(I) = YC()0Y2X

£ DO 560 1 = 1PNUP

560 EA(IM) =E1(I)
220 CONTINUE

SMEANA = 0,0
DO 561 1 51P60

561 SM1EANA = SMEANA + EA(f)
SMEANA =SMEANA/1O
VEA = 0.0
DO 563 1 = SIP60

563 VEA =VEA +(EA()SMEANA)**2

£ RETURN

7.71"



END
SUBROUTINE RANDU(IXPIYYYFL)
IY = IX*65539j
IF(IY)5,6p6

5 IY =IY + 2147483647+1
6 YFL IY

YFL =YFL*O.4656613E-9I

END



I

EXAMFLE .....------.2rH ORDER PLANT? 1ST ORDER CONTROLLER
NO. OF PLAN'T STATES 2
NO, OF" PLANT INPUTS I

I NO. OF EXTERNAL INPUT I
NO. OF PLANT OUTPUTS 1
NO. OF CONTROLLER STATES ( ACHI CONTRO.... I

PL.ANT STATE MATRIX .. AP
S0 .1.0

.0 -10.0

PLANT CONTROL INPUT MATRIX ... BPt .0
200.0

PLANT OUTPUT MATRIX -.- CP
1.0 ,0

CONTROLLER STA'I MATRIX F:LC
.523810

OBSERVER MAIRIX .-- GE
20.0
2..0

CONTROLILER CONTR)L INPUT MATRIX
--- 18162

CONTROLLER OUTPUT MATRIX (STATES-) HC
1:.0

CONTROLLER OUTPIJT MATRIX (INf'UTS). EL
1.38:1

NT-- 51
T :z SAMPLE PERIOD 0,0125 SEiC
DELTA Ti(NT-I INCREMENT USED IN .f HE NUMERICAL.

INTEGRATIONS TO) COMPUTE F',. I TAUYL PS I f P:3 11
PSITAU1 USING TRAPEZOIDAL RULE.

W IS THE EXTERNAl.. INPUT (WHITE GAUSSIAN NOISE WI'IH
MEAN = 0.0y AND VARIANCE = 1.0

THE SKEW OF' 'THE SECOND CONTROLLER [S 0.00725I THE NUMBER OF ITERATIONS IS 5
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